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Abstract
Many essential cellular processes such as signal transduction, transport, cellular motion and
most regulatory mechanisms are mediated by protein–protein interactions. In recent years,
new experimental techniques have been developed to discover the protein–protein interaction
networks of several organisms. However, the accuracy and coverage of these techniques have
proven to be limited, and computational approaches remain essential both to assist in the
design and validation of experimental studies and for the prediction of interaction partners and
detailed structures of protein complexes. Here, we provide a critical overview of existing
structure-independent and structure-based computational methods. Although these techniques
have significantly advanced in the past few years, we find that most of them are still in their
infancy. We also provide an overview of experimental techniques for the detection of
protein–protein interactions. Although the developments are promising, false positive and
false negative results are common, and reliable detection is possible only by taking a
consensus of different experimental approaches. The shortcomings of experimental techniques
affect both the further development and the fair evaluation of computational prediction
methods. For an adequate comparative evaluation of prediction and high-throughput
experimental methods, an appropriately large benchmark set of biophysically characterized
protein complexes would be needed, but is sorely lacking.

1. Introduction

In the highly crowded environment of a living cell (figure 1),
biological macromolecules occur at a concentration of
300–400 g l−1 and they physically occupy a significant fraction
(typically 20–30%) of the total volume. Most proteins interact,
at least transiently, with other protein molecules; indeed,
many essential cellular processes such as signal transduction,
transport, cellular motion and most regulatory mechanisms are
mediated by protein–protein interactions.

Given their biological importance [1], the development of
methods to detect and characterize protein–protein interactions
and assemblies is a major theme of functional genomics and
proteomics efforts [2, 3]. As discussed in further detail
below, currently, two main types of experimental methods
are used to detect such interactions: the yeast two-hybrid
screen (Y2H) [4], which is mainly limited to the detection
of binary interactions, and the combination of large-scale
affinity purification with mass spectrometry (MS) to detect

and characterize multiprotein complexes [5–7]. First applied
to yeast [8–11], these methods revealed the dense network
of interactions linking proteins in the cell, but their error
rate is high [12]. The coverage of Y2H screens seems
incomplete, with many false negatives and false positives as
evidenced by the limited overlap between sets of interacting
proteins identified by different groups [10] and between those
identified by Y2H and other approaches [13]. For yeast,
there are several efforts to assemble a consistent network
of reliable interactions from protein–protein interaction data
sets produced by different methods [14–16]. There is
clearly the need to develop large-scale benchmark sets of
interacting proteins that have been experimentally validated
by biophysical methods such as ultracentrifugation or light
scattering.

This discrepancy among experimental methods has
prompted keen interest in the development of computational
methods for inferring protein–protein interactions [17–19].
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Figure 1. Representation of the approximate numbers, shapes and
density of packing of macromolecules inside a cell of Escherichia
coli. (Illustration by David S Goodsell; reprinted with permission.)

Many consider protein–protein interactions in the most general
context and often refer to ‘functionally interacting proteins’
[19], implying that the proteins cooperate to carry out a given
task without actually (or necessarily) engaging in physical
contact. Other methods attempt to predict direct physical
interactions between proteins. Such approaches range from the
prediction of the binding interface without the prediction of the
full three-dimensional quaternary structure to techniques that
provide such quaternary structure predictions. In what follows,
we flesh out these ideas as well as describe in additional detail
the state-of-the-art of various high-throughput experimental
approaches. The prediction of direct, physical interactions is
the main focus of the present review.

1.1. Types of protein–protein interactions

Protein–protein interactions can be classified in various ways
such as homo- versus hetero-oligomeric, obligate versus
non-obligate and transient versus permanent. However, the
boundaries between these classes are blurred and protein
interactions can be regarded to span a continuous ‘interaction
space’ rather than a set of discrete classes.

Many proteins form strong, stable interactions, giving
rise to permanent protein complexes. Because these
complexes are much easier to study, most of the available
experimental data (such as x-ray structures) have been obtained
from stable complexes. However, transient protein–protein
interactions are equally important: they play a major role
in signal transduction, electron cascades and other essential
physiological processes. Nooren et al distinguish between
‘weak’ transient complexes that exist in vivo in an equilibrium
of different oligomeric states and ‘strong’ transient complexes
with binding affinities in the nanomolar range that dissociate
only upon triggering [20]. Since transient interactions
often neither form stable crystals nor give good NMR

structures, transient complexes are notoriously hard to study
experimentally. This is also reflected in the small number
of validated complexes found by Nooren and Thornton [20]
(weak: 16, strong: 23).

1.2. Inference of interacting sites and interfaces

One type of prediction approach addresses the following
question: given the sequence or the structure of a protein,
which regions or residues are likely to be parts of its interface
with another protein?

Knowing where the binding region of a protein is located
can help in guiding both experiments and other types of
predictions. For example, mutagenesis experiments can
be designed to pinpoint functionally important residues of
receptors and other binding proteins. Information on likely
binding sites can even be a starting point for drug design when
the given interaction needs to be inhibited or mimicked [21].
On the other hand, when the prediction of the structure of a
complex based on the structures of the component proteins (i.e.
protein–protein docking) is desired, knowledge of the binding
regions can be used to reduce the size of the configuration
space to search. As evidenced by assessments of blind
prediction experiments such as critical assessment of predicted
interactions (CAPRI) [22], this reduction is extremely helpful
for docking, and the success or failure of the procedure often
depends on having some knowledge (either from biochemical
experiments or prediction) of the interacting regions.

The basis of methods for predicting the interfacial residues
from protein sequence alone is the somewhat controversial
concept that residues at protein–protein interfaces are more
conserved across different protein families than other surface
residues. Earlier studies, based on only a small number
of complexes, supported this hypothesis. Recently, Caffrey
et al [23] have tested this approach on an expanded, non-
redundant set of 64 protein–protein interfaces. They found
that even though individual residues at the protein interface
are usually more conserved than other surface residues, if
the analysis is performed by examining candidate surface
patches, then the difference in conservation scores between
actual interface patches and other patches becomes too small
to allow prediction of the interface by conservation alone. The
most conserved surface patch has an average overlap of only
36–39% with the actual interface. Another result of this study
is that obligate interfaces differ from transient ones in two
aspects: they have significantly fewer alignment gaps at the
interface than the rest of the protein surface, and their buried
interface residues are more conserved than the partially buried
ones. Even though residue conservation is insufficient for
predicting interfaces, there is the hope that it can be useful for
prediction if applied together with other information such as
phylogenetic relationships [24] as well as residue propensities
[25] and physical properties [26].

When the structure of the individual molecules is known or
can be reliably predicted, then one can utilize knowledge from
numerous observations regarding the nature of protein–protein
interfaces to predict the interacting regions. Simple principles
of protein–protein recognition such as complementarity of
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shape, electrostatic interactions and hydrogen bonding have
long been recognized [27, 28]. In about one-third of
the interfaces, a recognizable hydrophobic core is found,
surrounded by inter-subunit polar interactions; the rest of the
interfaces show a varied mixture of small hydrophobic patches,
polar interactions and sometimes water molecules scattered
over the interfacial area [29, 30]. The amino acid composition
of interfaces is characteristic, and different types of interfaces
(such as domain–domain, homo- or hetero-oligomeric and
permanent or transient) can often be distinguished from
each other using the observed residue frequencies alone
[26, 31–33]. It is interesting to note that different studies
often report slightly different or even contradictory results,
in part, depending on whether they investigate interfaces as
contiguous surface patches or just define the interface as the
set of individual residues in contact with another subunit (see
[33] for some critical notes on the ‘surface patch’ approach).

It has long been recognized that some residues within
the binding interface make a dominant contribution in the
stabilization of protein complexes. These residues, defined
by having a significant drop in the binding affinity when
mutated to alanine are called ‘hot spots’. It has been
shown that hot spots correlate well with residue conservation
[34, 35]. Recently, Halperin et al [36] demonstrated that
both experimental hot spots and conserved residues tend to
couple across the protein–protein interface, and the local
packing density tends to be higher (about as high as within
protein cores) around them than at other spots within the
interface. Favorable conserved pairs include glycine coupled
with aromatic, charged and polar residues, as well as aromatic
residue coupling; on the other hand, charged pairs were under-
represented. These results deepen our understanding of the
nature of protein–protein interfaces and can lead to improved
prediction methodologies.

1.3. Inference of interacting partners

Another type of question is the following: ‘Given a set of
protein sequences (or structures), which pairs of proteins are
likely to have interactions?’ Our goal in asking a question like
this is to reconstruct the protein–protein interaction network
for a set of proteins; ideally, we would like to extend the
analysis to the whole proteome of an organism. The network
of all interactions within an organism (not necessarily limited
to protein molecules) is sometimes called the interactome.
While functional linkages between proteins (as inferred by
various methods for genome analysis) can often suggest direct,
physical interactions between them [19, 37, 38], functional
linkage is clearly a broader concept and does not necessarily
involve direct physical interaction. Evidence of direct binding,
however, is a good indication of functional relatedness, and
therefore, knowledge of the interactome is a significant step
toward understanding the functional organization of the cell.

In recent years, high-throughput experimental methods
such as the yeast two-hybrid method and mass spectrometry
have been used to elucidate the protein–protein interaction
network of several organisms [8, 10, 11, 39, 40], even though
the accuracy of these methods is often lower than expected and

often the conclusions are inconsistent [41]. Nevertheless, the
resulting data sets have been subject to intensive analysis. In
particular, the topologies of the networks have been studied in
great detail, and they were found to be small-world, scale-free
and modular [42].

Because the experimental data on interaction networks
are known for only a few organisms, it is an important
question whether interaction annotation can be transferred
from one organism to another. It turns out that protein–
protein interactions can readily be transferred when a pair
of proteins has a joint sequence identity of >80% or a joint
E-value <10−70 [43]. Based on this finding, an online database
of interologs (orthologous pairs of interacting proteins) has
been created [43]. Other observations that can form the basis
of interaction predictions include the following: (1) proteins
that can functionally substitute for one another tend to have
anti-correlated distribution patterns across organisms [44]; (2)
interacting proteins tend to exhibit similar phylogenetic trees
[45]; (3) the interaction network has certain conserved motifs
[46]; (4) interacting proteins tend to have similar phylogenetic
profiles and a similar gene neighborhood; (5) they tend to be
involved in gene-fusion events and (6) their co-evolution leads
to some identifiable correlated mutations in their sequences
[38].

Prediction approaches based on sequence and genome
analysis do not always provide fully reliable answers regarding
the presence or absence of a putative interaction. In
these cases, looking at the structural details of the putative
interaction using an experimentally determined or even a
predicted structure can be of help. This leads to another class
of interaction prediction methods: those that use a structure-
based approach [40].

2. Structure-independent methods of
protein–protein interaction prediction

In this section, we focus on structure-independent methods for
the prediction of protein–protein interactions that are based
on a priori biological knowledge. Thus, methods that rely
heavily on experimental data (e.g. learning features from
known protein interaction partners) are not discussed here.

2.1. Methods based on gene context conservation

The conservation of different types of genomic context
information that can be extracted from the comparative
analysis of genomes can be used to predict functional
interactions between gene products [37]. The application
of this type of method to the prediction of protein–
protein interactions suffers from the problem that functional
interaction does not necessarily imply direct physical
interaction [19]. Recently, new ways of exploiting genomic
context for the prediction of functional associations between
proteins have been developed, but their correlation with direct
physical interactions has not been investigated [47].
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2.1.1. Co-occurrence of genes in related species (phylogenetic
profiles). The underlying hypothesis of the phylogenetic
profile method is that functionally linked proteins co-evolve.
If this hypothesis is true, then these proteins should have
homologs in the same subset of organisms. In the phylogenetic
profile method, each analyzed protein is represented as a string
of bits (a phylogenetic profile), indicating the presence or
absence of homologs of the given protein in a set of genomes
[17, 48]. Proteins exhibiting similar phylogenetic profiles are
predicted to be functionally linked, i.e. they participate in a
common structural complex or metabolic pathway. Recently,
Wu et al extended the method by taking into account the
probability that a given arbitrary degree of similarity between
two profiles would occur by chance. This extension allows
inference to be done at any desired level of confidence [49].

In their evaluation of methods of protein function
prediction by genomic context, Huynen et al found direct
physical interactions for only 34% of the Mycoplasma
genitalium proteins analyzed by phylogenetic profiles [50].
The main disadvantages of the phylogenetic profile method
are that only complete genomes can be used as input (because
that is the only way to be certain that homologs of a given gene
are absent in a given organism) and that somewhat arbitrary
thresholds must be set to dictate whether the homolog is
present. Moreover, given the observation that proteins can
be homologous but have different function, the presence of
a homolog does not guarantee that the specified function is
conserved across the set of organisms. Perhaps the method
could be improved by restricting the bit strings to sets of
conserved orthologs.

2.1.2. Conservation of local genomic context. This method
is based on the fact that neighboring genes in bacterial and
archaeal genomes tend to encode proteins that show physical
or functional interactions with each other. Conservation of
the genomic context across different genomes can be detected
based on (1) analysis of gene order and operon architecture
[51] or (2) analysis of gene clusters, defined as sets of genes
that occur on the same DNA strand and have gaps between the
adjacent genes of 300 base pairs or less [52].

Huynen et al found that ∼63% of proteins encoded by
gene pairs conserved as neighbors in phylogenetically distant
genomes physically interact, either directly (30%) or indirectly
(33%) [50]. The main limitation of methods based on the
conservation of the local genomic context is that they cannot
be applied to eukaryotes, where, with only a few exceptions,
genes appear to be randomly distributed [53]. Also, genome
annotation errors such as incorrect assignment of translation
starts, frame shifts and missed or incorrectly predicted genes
complicate the comparative analysis of gene orders [54].

2.1.3. Gene fusion analysis. Functional interaction can be
inferred from the presence of proteins in an organism that have
homologs in another organism fused into a single protein. The
existence of a fusion protein in one genome (called a ‘Rosetta
Stone sequence’ [55] or a ‘composite protein’ [56]) allows
the prediction of the interaction between the single-domain
proteins in other genomes, even when they are not encoded by

neighboring genes. The essential assumption of this method,
i.e. genes linked by fusion are at least functionally related, has
been validated by the analysis of several complete genomes
[50, 57]. Enright et al employed BLAST [58] comparisons
to establish orthology between proteins in the query and the
reference genomes, and Marcotte et al used the Pfam [59]
and ProDom [60] databases with the same purpose. Recently,
Truong and Ikura have proposed a method for domain fusion
analysis that does not directly rely on sequence comparison and
can be applied to large non-redundant databases [61]. They
start with Pfam domain assignments of each protein in Swiss-
Prot + TrEMBL [62] and then apply successive relational
algebra operations to identify putative functional linkages.

Huynen et al found evidence of direct physical interaction
for 55% of the M. genitalium proteins analyzed by gene fusion
[50]. The main disadvantage of gene-fusion analysis is that
this approach is limited by the number of fusion events,
which varies for different types of genes. For instance,
certain structural and functional groups, e.g. proteins with an
alpha/beta fold [63] have a higher propensity to be involved in
gene-fusion events. Metabolic enzymes exhibit a tendency to
participate in multiple gene-fusion events that is three times
higher than a protein selected at random [64].

2.2. Methods based on co-evolution of interacting proteins

Physically interacting proteins generally evolve in a
coordinated fashion that preserves relevant contacts between
them [65]. Thus, methods based on this principle are more
likely to predict relationships between proteins, which are not
only functional but also reflect direct physical interactions.

2.2.1. Phylogenetic tree similarity. Phylogenetic trees of
interacting proteins have a higher degree of similarity than
those constructed based on non-interacting proteins. On the
basis of this concept, Goh et al evaluated the similarity of
phylogenetic trees of the two domains of phosphoglycerate
kinase as the linear correlation between the pairwise distance
matrices used to build the trees [66]. They used the co-
evolution of the two domains of phosphoglycerate kinase to
quantify the co-evolution of chemokines and their receptors.
This approach was extended to different test sets by Pazos
and Valencia, who proposed a more general application of
the approach for predicting protein interactions, including
a rigorous statistical evaluation [67]. However, while their
approach was able to identify protein families that interact,
it could not identify specific interacting partners between the
two protein families because the authors only incorporated one
homologous protein per organism. In recent modifications of
this method, this problem has been solved in a few specific
cases by analyzing the correlation between sequence similarity
distance matrices constructed for protein families [45, 68]. A
limitation of methods based on phylogenetic tree similarity
is that a good quality multiple sequence alignment including
homologs of the two proteins from the same set of organisms
is required.
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2.2.2. Differential accumulation of correlated mutations (in
silico two-hybrid method). In an early series of papers,
Pazos et al employed correlated mutation analysis of multiple
sequence alignments to detect sets of residues that interact
across protein interfaces [65]. They also predicted interdomain
contact regions of heat-shock protein Hsc70. This work
was subsequently followed up by an approach, named the
‘in silico two-hybrid method’, that can identify putative
partners as well as the regions of the sequence that might
interact [18]. The procedure consists of a search algorithm to
find pairs of multiple sequence alignments with a distinctive
co-variation signal. The method is based on the hypothesis that
co-adaptation of interacting proteins can be detected by the
presence of a particular number of compensatory mutations in
the corresponding homologs of different species. Significant
results using this method have been reported in a number
of cases including the use of this approach to construct a
‘complete’ interaction network in E. coli. The main advantage
of the in silico two-hybrid method is that it indicates not only
a possible interaction, but also the possible protein region
involved; this information can be used to guide quaternary
structure prediction algorithms, e.g. protein–protein docking
simulations.

2.2.3. Co-evolution of gene expression. Based on the
observation that interacting proteins are frequently co-
expressed to maintain the correct stoichiometry among
interacting partners, Fraser et al have shown that the expression
co-evolution can be used for the computational prediction
of protein–protein interactions [69]. They find that the co-
evolution of expression in yeast is a more powerful predictor
of physical interaction than is the co-evolution of amino acid
sequence. A limitation of this approach is that it may not be
easily applicable to organisms with insignificant codon bias
due to gene expression levels.

3. Structure-based methods of protein–protein
interaction prediction

3.1. Modeling of protein–protein interactions by homology

Protein–protein interactions can be modeled by similarity,
using known structures of protein complexes whose
components are homologous or similar to the proteins whose
interactions are to be modeled.

In a straightforward extension of the MODELLER
homology modeling technique [70], known structures of
protein complexes were used to evaluate the inter-subunit
interactions in putative complexes comprising homologs of
each subunit, using a scoring function based on the propensities
of residue pairs to span protein–protein interfaces [71]. Using
this technique, ∼30 000 links between pairs of ∼10 000
modeled sequences were predicted, with an estimated false
positive rate of 25%. These predicted links have been included
in the MODBASE database, which contains homology models
for ∼660 000 sequences in the Swiss-Prot/TrEMBL database
[71].

In a similar effort, Aloy and Russell [72] described a
method to test putative interactions on complexes of known

structure. Given a 3D complex and alignments of homologues
of the interacting proteins, they used an empirical potential to
assess the fit of any possible interacting pair on the complex.
In an evaluation of the method, all known complexes gave
significant scores except for peptidase/inhibitor complexes,
which are known to interact via many main-chain to main-
chain contacts. The method, named ‘interaction prediction
through tertiary structure’ was later made available as an online
server [73]. Using this approach, combined with screening by
electron microscopy (EM), models (partial or complete) were
built for 54 protein complexes in yeast and a structure-based
network of molecular machines was constructed [74].

The assumption behind these homology-based
approaches is that interaction information can be
extrapolated from one complex structure to homologs
of the interacting proteins. Indeed, it has been demonstrated
that close homologs (30–40% or higher sequence identity)
almost always interact in the same way (i.e. the RMSD
between the corresponding interacting regions is low) [75].
Similarity only in fold (without additional evidence for a
common ancestor) was found to be only rarely associated
with a similarity in interaction. This suggests that there is
a twilight zone of sequence similarity where the interaction
may or may not be similar. Threading-based techniques can
be used to handle sequences in this ‘twilight zone’.

3.2. Threading-based method: MULTIPROSPECTOR

To capture more distantly related or even analogous proteins,
the idea of multimeric threading was introduced [76],
extending fold recognition approaches [77] to multiple chains.
For dimeric threading, two target sequences are threaded onto
each structure in a representative, non-redundant library of
folds. Templates that match one of the query sequences with
a Z-score higher than a threshold are collected. The template
structures in the two resulting sets are then examined. If
two templates (one from each set) form a dimer, then each
of the two target sequences is threaded onto its template in
the presence of the other subunit. The structure–sequence
alignments are optimized during this double chain threading
using a knowledge-based interfacial potential [78], thereby
allowing the predicted structure of the complex to influence
the individual sequence–structure alignments.

The template pairs with the highest Z-score (energy in
standard deviation units relative to the mean) and the lowest
interfacial energies are subjected to further filtering. If no
alternative monomeric structure with a higher Z-score can be
found for any of the sequences and the interaction energy is
below a certain threshold and the Z-scores for the complex are
above 5.0, then this pair of sequences is predicted to form a
dimer.

The approach was tested on a benchmark set of true
monomers, homo- and heterodimers with excellent results.
When MULTIPROSPECTOR was tested on 2457 known
interactions of yeast proteins, 144 were correctly identified;
this small number clearly shows the limitations due to the
fact that an existing template structure is needed for correct
predictions. MULTIPROSPECTOR has been applied on a
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genomic scale to the Saccharomyces cerevisiae proteome [79].
This study yielded 7321 predicted interactions, with only
374 found in experimental yeast interaction data. However,
the overlap between different large-scale experimental sets is
similarly small [79].

3.3. Computational protein–protein docking

3.3.1. Overview. Docking aims to predict the native three-
dimensional structure of a multimeric protein complex given
the atomic coordinates of its constituent proteins. The docking
procedure is, in general, facilitated by prior knowledge,
e.g. knowing the binding site will help in restricting the
search space significantly (for an overview see [80]). Often,
proteins had been studied for a long time before their structures
were solved; therefore, the residues involved in their binding
are known or their identification is easy, as e.g. for serine
proteases and antibodies. As mentioned above, certain types
of residues, called ‘hot spots’, have a major contribution to
the binding energy [81, 82], and prior knowledge of them
can facilitate the search. Correlated hot spots are more
conserved than expected from a random distribution and might
be identified by theoretical methods [36]. Known structures
of homologous complexes are also helpful: in the CAPRI
competition, excellent results were obtained in docking a
superantigen toxin to the beta-chain of the T-cell receptor
(TCR) because the complex had a close homolog which was
used for comparative modeling [83]. NMR restraints were also
combined with docking methods to restrict the search space
[84]. However, due to the advent of structural genomics, often
the sequence and three-dimensional structure of a protein may
be the first information obtained, without any experimental
data on function or binding. As the sampling of the ‘interface
space’ by the known complex structures is still sparse [85],
there is a large number of ‘zero-knowledge’ cases for which
docking could generate putative structures for complexes of
proteins assumed to be in contact. All docking methods rely
on the assumption that interacting proteins have a certain
degree of shape complementarity, a notion first formulated
by Emil Fischer in 1895 to explain the substrate binding of
enzymes. While observations for many protein complexes
for which atomic structures could be obtained show a high
level of similarity between the bound (i.e. in the complex)
and unbound structures, most proteins undergo small to large
conformational changes upon binding, commonly known as
‘induced fit’, the prediction of which has proved to be one of
the greatest challenges in docking.

3.3.2. Representation of the protein surface. One crucial
component of most docking algorithms is the choice of
the computational representation of the protein’s surface,
depending on the sampling strategy used and the features
to be correlated. Few methods use the atomic structure
directly [86]. Many methods represent the structure either by
mapping it to a grid [87] or by spherical harmonic expansions,
while others take only a set of points (‘sparse critical points’)
[88] based on the Connolly surface [89] and represent the
surface as triangles with their normal vectors attached. Any

of these surface representations can additionally be ‘softened’
to allow for flexibility of the side-chains. Long and flexible
or incorrectly positioned side-chains within the interface can
prevent successful docking. Several cases, such as kallikrein A
and bovine pancreatic trypsin inhibitor (BPTI), are known to be
particularly difficult docking candidates because of protruding
amino acids in the interface. Some of these residues appear to
be ‘key’ or ‘anchor’ side-chains, interacting with structurally
constrained pockets, while others, mostly on the periphery
of the binding pocket, show ‘induced fit’ behavior [90, 91].
Another approach to handle protruding side-chains is their
truncation. Gabb et al and Chen et al reported that this solution
unfavorably affected their results [92, 93], while altering the
geometric weight of grid cells for the most variable side-
chains, e.g. lysine improved the outcome in nearly all test
cases [94]. Other methods of surface softening include a low-
resolution docking method [95, 96], the use of a simplified
model for selected side-chains [97], and the thickening of the
surface layer [98]. All modern docking techniques use some
approximate solution to handle side-chain flexibility.

3.3.3. Search algorithm. Even using a rigid body
approximation, the remaining six-dimensional conformational
search space is large. Due to new algorithms and increasing
computer power, it is sometimes possible to perform an
exhaustive search. The search scheme chosen is directly
dependent on the type of surface representation. For grid
representations, the most popular strategy is based on Fourier
correlation. Introduced in 1992 by the groundbreaking
work of Katchalski and coworkers, this technique allows
the calculation of correlations between the points of two
grids simultaneously for all possible translations, leading to
a considerable speed-up of the search [87]. It has been
implemented in a variety of docking programs including
FTDock/3D-Dock [92, 99], GRAMM [95], DOT [100] and
ZDock [101]. A similar Fourier-based approach for the
fast calculation of correlations using spherical harmonics has
been implemented in the program HEX [102]. Some other
algorithms are also capable of searching the entire rotational
and translational space, notably the matching of surface
cubes [103], genetic algorithms (GAPDOCK [104], DARWIN
[105]) as well as methods based on Boolean operations
(BiGGER [106]) or a pseudo-Brownian Monte Carlo approach
(ICM [86]). Sampling the conformational space evenly should
yield (at least in theory) several near-native protein orientations
besides millions of incorrectly docked conformations. To
eliminate the incorrectly docked complexes, filtering is
applied, exploiting the expected complementarities between
the two (or more) molecules. Geometric fit alone is not capable
of distinguishing near-native from non-native complexes.
Protein–protein interfaces vary widely in shape, size, amino
acid content, hydrophobicity, electrostatics and other features
[28, 31, 107]. The ‘complementarity idea’ has therefore
been extended to coupled electrostatic fields [92, 108] and
hydrophobic complementarities [109, 110]. For several
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complexes, such as the trypsin-BPTI [111] and the barnase–
barstar system [112], electrostatics is the major contributor to
the binding process and stability. Other complexes as elastase–
OMTKY or chymoptrypsin–OMTKY show desolvation-
driven complex formation [113]. Consequently, desolvation
effects have been taken into account in many algorithms.
One quite successful example is the atomic contact energy
(ACE) model [114]. This approach involves replacing
atom–atom contacts by atom–water contacts and has been
implemented in ZDOCK [93] and other algorithms [115].
Apart from complementarities, knowledge-based potentials
are commonly used to discriminate native conformations from
non-native ones.

3.3.4. Refinement. After filtering out the incorrectly docked
structures, a small number of candidate models remain. At
this stage of the docking procedure, neglected side-chain
flexibility can be re-introduced, and a subsequent refinement
step might improve the model. Methods for refinement
include a biased probability side-chain optimization method
(ICM [86]) or side-chain minimization (Multidock [99]).
The simultaneous correction of main-chain displacements
seems to be quite successful for small main-chain movements
(ROSETTA [116]). Algorithms taking side-chain flexibilities
into account performed slightly better in CAPRI rounds 1 and
2 [83], compared to methods without any flexibility. However,
they failed to provide correct predictions for weakly binding
complexes and complexes with large backbone displacement
between bound and unbound states.

3.3.5. Main-chain flexibility. The correct prediction
of protein–protein orientations with substantial backbone
displacement between bound and unbound forms, as seen in
several transient complexes in signal transduction, seems to be
impossible using a ‘rigid body’ type approach. All docking
methods failed to predict a homodimer with a backbone
displacement of ∼12 Å in the third CAPRI round [117], and
only a few acceptable results were obtained for the complex
between the protein kinase from Lactobacillus casei (Hpr-K)
and its substrate (P-Hp), with a difference of 2 Å between
the bound and unbound forms [83]. For many enzyme–
inhibitor complexes, the ‘rigid body assumption’ might yield
reasonable docking results even if the complex obeys an
induced-fit recognition mechanism [118]. Only a few methods
try to include main-chain flexibility directly in the calculations.
Sandak et al studied the docking of Calmodulin with its
M13 peptide, allowing for domain or substructural movement
in the receptor or the ligand structure [119, 120]. Several
experimentally confirmed binding modes could be reproduced
remarkably well. For complexes where the hinge region is
known from structural comparisons or experimental data, this
method has the potential to provide good predictions.

3.3.6. Type of complex. The success of a docking experiment
is also dependent on the type of complex to be predicted. Vajda
et al introduced a classification scheme for protein–protein
complexes, based on the level of difficulty to find the native

conformation by means of docking [117]. According to this
scheme, complexes with major backbone displacement are as
nearly unpredictable as transient interactions. Stable enzyme–
inhibitor systems with evolutionarily optimized interfaces [30,
121] are, in general, ‘easy cases’ whose structures are usually
found independently of the docking method with high accuracy
[122]. On the other hand, antibody–antigen systems could be
called ‘hard cases’: first of all, the solved crystal structures
do not resemble real-world scenarios since most are high-
affinity antibodies designed for a specific purpose. In addition,
the interface of those complexes often has grooves and deep
pockets, in good agreement with the idea that the backbone
geometry in these complexes is not as optimized as, e.g., in
serine proteases. The notoriously hard to predict transient
interactions are in the same difficulty class [117].

3.3.7. Improvements. Recent interesting developments
include a structure-based method to identify interfacial
residues by means of docking followed by an analysis
of enriched low-energy conformations [123]. For some
complexes, e.g. the CAPRI target T07 (TCR beta chain–SpeA
complex), a binding site different than the experimentally
determined one was found. In this example, the predicted
site was located in the interface between the TCR alpha and
the TCR beta chain (PDB-entry 1tcr). Another interesting
approach is the incorporation of external, e.g. biochemical,
data directly into the conformational search by up- or down-
weighting certain intermolecular residue contacts [124].

3.3.8. Genome-scale docking. Although interesting lessons
can be learned from docking experiments with single protein–
protein systems, the docking-based prediction of protein
interactions on a genomic scale is an even more exciting
undertaking. One of the few approaches in this direction is
the docking of very approximate molecular protein structures
[125] based on Vakser’s low-resolution docking. Another
interesting study described the successful reconstruction of
homo-tetramers from comparative models of a single subunit
using docking and comparative modeling techniques [126].
Obviously, the performance of these methods, when applied
on a genomic scale, is still far behind that of sequence-based,
large-scale interaction prediction.

3.4. Other structure-based methods

Several methods have been developed for the structure-
based prediction of protein binding sites. Many of these
approaches just predict functionally important sites; here, we
only mention those that specifically focus on the residues
involved in protein–protein binding. Relying on the finding
that there are structurally conserved residues in binding sites
[35], neural networks trained with a reduced representation of
the interacting patch and sequence profile were able to detect
73% of the residues at protein–protein interfaces in a test set
[127]. In an extension of the evolutionary trace approach, Aloy
et al [128] developed an automated method that maps invariant
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polar residues in a multiple sequence alignment onto a protein
structure and identifies spatial clusters of these residues as
being putative functional sites. The procedure proved useful
for filtering putative complex structures obtained by protein–
protein docking. Using a related approach, Landgraf et al
[129] defined two types of scores based on spatial clusters of
residues and an associated multiple alignment and found that
(1) a ‘regional conservation score’ is useful for identifying
functional residue clusters as well as for the prediction of
poorly conserved, transient protein–protein interfaces; (2) a
‘similarity deviation score’ is useful for finding specificity-
conferring regions.

Given the structure of a complex, hot spots have been
predicted using a simple physical model [130]. In a test of this
‘computational alanine-scanning’ procedure, 79% of hot spots
were correctly predicted [131] and this procedure formed the
basis of a successful redesign of a number of protein–protein
interfaces [132].

3.5. Interfacial potentials

Interfacial potentials are used in most structure-based methods
to evaluate prospective protein–protein conformations. They
are based on the idea that energy-like parameters such
as free energy should discriminate native from non-native
conformations. The native complex structure is thought to
be at the global thermodynamic minimum [133, 134] of the
free-energy function. However, calculating the free energy
is complicated. Knowledge-based potentials [135–137], also
called statistical effective energy functions [138], have become
increasingly popular; easy and fast to calculate, they have been
incredibly successful in protein fold recognition [139–142],
structure prediction [78, 143, 144] and other fields. They
can be built at various levels of detail and can be atomic or
residue-based. By comparing a given feature (e.g. side-chain
contacts) to a reference state where the putative interaction
is assumed to be absent, it can be turned into an energy-like
quantity. The physical basis of this approach is somewhat
controversial [145–148], mainly because of the construction
of a so-called reference state which is essential for the quality
of the derived potential [149]; however, a good correlation
between such knowledge-based and physics-based potentials
has been observed [150].

4. Structure-based versus structure-independent
methods

4.1. Advantages and disadvantages of structure-based
methods

Even though protein–protein interactions can often be inferred
from sequence information and genome analysis alone, it
is ultimately the fine atomic details of an interaction that
determine the binding affinity and the specificity of binding
one biomolecule to another. Structure-based methods analyze
protein–protein interactions at this level, and therefore have
the potential to be more accurate and decisive than methods
that do not use structure information. In addition, they have the

ability to provide predicted structures of complexes [74] which
can be essential for understanding the function of molecular
machines [151].

However, structure-based methods also have several
disadvantages, the main one being the lack of structural
templates for most types of interactions. The number of
structurally distinct interactions is estimated to be ∼10 000,
of which less than ∼2000 are known [152]. Extrapolating
the current growth rate (200–300 new interactions per year), it
would take two decades or more before most interaction types
are known [152], although proposed initiatives for structural
genomics of complexes [153] are expected to speed up this
process. Still, for the time being, homology-based complex
modeling suffers from the lack of templates for many protein
pairs, which means that considerably less reliable, ab initio
types of methods such as protein–protein docking have to be
applied.

Another limitation is that it is difficult to crystallize
weakly interacting complexes. It is widely believed that
the majority of functional protein–protein interactions are
transient and do not form complexes stable enough for
crystallization or even NMR studies [154]. Therefore, by using
these techniques, we may never be able to obtain experimental
structures for some of the most important protein–protein
interactions.

Structure-based methods critically depend on the energy
functions used to evaluate proposed conformations, and, when
applicable, on the algorithm used to sample conformational
space. In nature, some interactions show overlapping
specificities [155] while others are remarkably specific
[156]. Recent success in designing protein–protein interaction
specificity [132] suggests that, despite some shortcomings,
energy functions capable of reproducing the specificity of
protein–protein binding already exist, and structure-based
computational methods can now be used to modulate and
reengineer protein–protein interaction networks in living cells
[157].

4.2. Utility of protein complex models

Protein structures and knowledge of the interactions between
specific proteins are essential to understand the molecular
mechanisms of biological systems. In general, proteins do
not act in an isolated manner; instead, they are organized
in multiprotein complexes, whether permanent or transient,
that allow them to perform essential roles in all kinds of
biological processes. An important practical motivation for the
determination of new protein structures and their complexes
is the fact that the cause of many genetic diseases can be
traced back to deficiencies in single gene products or in their
interaction. The design of therapeutic drugs is also facilitated
by the availability of experimental protein structures or good
quality protein models. Therefore, protein structures can
provide insights into how implicated gene products interact
among themselves or with other partners [158].
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5. Evaluation of protein–protein interaction
predictions

5.1. Need for a biophysically characterized, gold standard
set of complexes

In order to evaluate the prediction methods described in the
preceding sections, a ‘gold standard’ reference set is needed.
The requirements for this reference set depend on what type
of prediction method it will be used to evaluate.

To evaluate methods for the prediction of interacting
partners, a set of confirmed interacting partners is needed.
Although only a fraction of interactions in existing protein–
protein interaction databases is correct and confirmed, a
reasonably large interaction partner data set can be com-
piled. For the purposes of a comparative assessment of
large-scale data sets of protein–protein interactions, von
Mering et al [12] assembled a reference set of known
interactions from two catalogs of protein complexes in yeast.
One (http://mips.gsf.de/proj/yeast/catalogues/complexes/
index.html) is maintained at MIPS [159] and the other is a part
of the Bioknowledge database (YPD) [160]. The reference
set contains 10 907 trusted interactions and could readily
be used for the evaluation of interaction partner prediction
methods. Also, the protein–protein interaction database DIP
[161] includes a subset (named CORE) that contains the
interactions believed to be correct.

For the evaluation of predictions of interacting sites,
regions and binding modes, a representative set of known
structures of protein complexes is needed. Recently, Keskin
et al [85] compiled a non-redundant set of the structures of
protein interfaces from structures found in the Protein Data
Bank. This set contains 3799 clusters of interfaces and can
be a good starting point for evaluating prediction methods.
Recently, we have compiled a non-redundant template library
of protein complexes (unpublished), which can be utilized as
a benchmark set as well.

Prediction methods that rely on some energy function or
scoring function in order to decide whether an interaction is
present would greatly benefit from available data on binding
affinities and data on the contribution of individual residues to
the free energy of binding. Such data are available in various
databases, e.g. KDBI [162] and BID [163] (see the databases
section for more detail). False positive and false negative
predictions could be evaluated in a more sophisticated way
if experimental binding data and predicted binding energies
could be compared. However, at present, we are not aware of
an integrated, representative, non-redundant data set of protein
complexes/interfaces with associated binding energy data or
other biophysical parameters. Construction of such a data set is
sorely needed not only for the validation and benchmarking of
theoretical approaches but also to validate the various proposed
high-throughput experimental methods.

5.2. Databases of protein–protein interactions

Several databases contain experimental information on
protein–protein interactions. Due to the varying reliability
of various experimental techniques, the accuracy of this

information varies on a wide range. Table 1 shows a list
of some of these databases.

The data in the dedicated protein–protein interaction
databases such as DIP and the biomolecular interaction
database (BIND) come from various sources. Besides direct
submissions, most come from high-throughput experiments
and from manual or automatic processing of literature
reporting data from small-scale experiments. DIP currently
contains data ∼45 000 interactions between ∼17 000 proteins;
BIND lists ∼63 000 interactions between ∼35 000 proteins.

In the past couple of years, data from high-throughput
experiments such as the mapping of the protein interaction
network of yeast [8, 11] and Caenorhabditis elegans [164]
have tremendously increased the coverage of these databases.
Currently, about 80% of interactions in DIP come from high-
throughput data [165]. However, the large size of such data
sets makes it impractical to verify individual interactions by
the same methods as those used in small-scale experiments.
Using two forms of computational assessment, namely the
expression profile reliability (EPR) index and the paralogous
verification method (PVM), Deane et al [41] estimated that
about 50% out of 8000 pairwise yeast protein interactions in
DIP are reliable. The interactions believed to be correct have
been separated as a subset of DIP denoted as the CORE, which
currently includes about 30% of interactions in DIP [165].

Small-scale experiments provide more reliable data
about protein–protein interactions. Such data have been
extracted from the biomedical literature and manually curated.
Automatic data mining procedures have been helpful in this
tedious work: Marcotte et al [166] applied a Bayesian
approach using discriminating words in Medline abstracts to
identify papers about protein–protein interactions in yeast, and
Donaldson et al [167] developed a support vector machine
(SVM) to perform a similar task. Human review and
curation, however, are still necessary before the data can get
incorporated into the databases.

Although databases such as DIP and BIND do a fairly
good job cataloging known protein–protein interactions; in
most cases, they contain little more than just the type of
experiment used to identify the interaction. Only a negligibly
small fraction of database entries contain biophysical data
such as a dissociation constant. The KDBI (kinetic data of
biomolecular interactions) database was created to fill this
gap, providing kinetic data, including dissociation constants
and various other rate constants, collected from the literature.
It is not limited to protein–protein interactions, but includes
kinetic data on protein–RNA, protein–DNA, protein–ligand,
RNA–ligand and DNA–ligand binding or reaction events as
well. KDBI currently contains 8273 entries of 1231 binding or
interaction events, which involves 1380 proteins, 143 nucleic
acids and 1395 small molecules.

Both DIP and BIND are in the process of including data
on protein complexes from the PDB (Protein Data Bank), the
database of protein structures. The PDB is a rich source of
structures of protein complexes. Often, however, it is difficult
or impossible to determine the physiological oligomeric state
of a protein in a given PDB entry just by looking at the entry
itself. The deposited coordinates in a PDB entry usually
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Table 1. Databases of protein–protein interactions.

Database Type of information URL Reference

DIP (Database of Interactions (direct binding) http://dip.doe-mbi.ucla.edu [161]
Interacting Proteins) between proteins
IntAct Interactions (direct binding) http://www.ebi.ac.uk/intact [216]

between proteins
BIND (Biomolecular Interaction Interactions (binding) http://www.bind.ca/ [16]
Network Database) between biomolecules
MINT (Molecular INTeraction Interactions (both direct http://mint.bio.uniroma2.it/mint/ [217]
database) and indirect relationships)

between proteins
BRITE (Biomolecular Relations in ‘Generalized interactions’ http://www.genome.jp/brite/ [218]
Information Transmission and between proteins (including
Expression) direct binding) [part of KEGG]
InterDom Integrative database of putative http://interdom.lit.org.sg [219]

protein domain interactions
PDB (Protein Data Bank) Atomic structures of http://www.rcsb.org/pdb/ [176]

proteins, including those
of protein complexes

PQS (Protein Quaternary Quaternary structures of http://pqs.ebi.ac.uk/ [168]
Structures) proteins in PDB
Data set of protein–protein Structurally non-redundant http://protein3d.ncifcrf.gov/∼keskino/ [85]
interfaces set of interfaces
SPIN-PP (Surface Properties of protein–protein interfaces http://honiglab.cpmc.columbia.edu/ Unpublished
Interfaces—Protein Protein in PDB SPIN/main.html
Interfaces)
KDBI (Kinetic Data of Kinetic parameters of http://xin.cz3.nus.edu.sg/group/ [162]
Bio-molecular Interactions) protein–protein and other kdbi/kdbi.asp

interactions
ASEdb (Alanine Scanning Energetics of side-chain http://www.asedb.org [220]
Energetics database) interactions at heterodimeric

interfaces, from alanine scanning
mutagenesis

BID (Binding Interface Detailed data on protein http://tsailab.org/BID/ [163]
Database) interfaces
Organism-specific Various interactions, http://mips.gsf.de/proj/ppi/
databases functional links and links therein

consist of the contents of the asymmetric unit (ASU), from
which the coordinates of the whole crystal system can be
generated. The contents of the ASU can define one or more
copies of the macromolecule and crystallographic symmetry
operations might be required to generate the complete
macromolecule. The Protein Quaternary Structures (PQS)
database has been created in an attempt to reconstruct the
biologically relevant macromolecular structures using the PDB
data. To generate PQS entries, multiple copies of the same
molecule are separated, and all relevant symmetry operations
are applied, followed by calculating the surfaces buried in
interfaces in order to discriminate crystal packing artifacts
from functional protein–protein contacts. Since this is an
inference procedure itself, some erroneous classifications are
expected. According to early tests [168], 19% of complexes
classified as probable dimers mismatched some other online
annotation. Currently, PQS contains about 30 000 entries, with
about 9500 entries being monomers and about 10 000 entries
being dimers, with the rest of the entries being divided among
various higher-order complexes.

The PDB itself has a section (denoted as ‘biounit’)
containing structures of biological complexes reconstructed
from the original PDB entries. These reconstructed structures
come in part from PQS and are subject to the same potential

problems as the PQS entries themselves. On the other hand,
the well-annotated protein sequence database Swiss-Prot [62]
contains reliable information on the biological oligomerization
status (as determined by experiments) of many proteins.

Another structure-derived data set is named ‘data set of
protein–protein interfaces’ [85] and contains a non-redundant
set of interfaces obtained by clustering the interface structures
found in PDB into 3799 clusters. The authors identified
three different types of clusters according to whether a
similar interface is associated with similar global folds
of the component proteins. A related structure-derived
database is SPIN-PP (Surface Properties of INterfaces—
Protein–Protein Interfaces), which contains images of protein–
protein interfaces with various physico-chemical properties
mapped onto them. It includes 6460 interfaces, with a non-
redundant subset (labeled the ‘unique’ set) of 855 entries.

Other databases of interest include BID (Binding
Interface Database) and ASEdb (Alanine Scanning Energetics
database). BID entries contain detailed protein descriptions,
interaction descriptions and data on the contribution of each
amino acid to binding, obtained by mining the primary
literature describing alanine scanning and other site-directed
mutagenesis experiments. The database currently includes 455
interacting protein pairs with over 6417 hot spots documented.
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Created in a similar spirit, ASEdb is a searchable database of
single alanine mutations in protein–protein, protein–nucleic
acid and protein–small molecule interactions in which binding
has been experimentally determined.

Protein–protein interaction databases are constantly
growing and becoming enriched with new features and data
types. Although they provide invaluable data about various
types of analyses and functional annotation methods, the
number of biophysically fully characterized protein–protein
interactions is still small and only covers a tiny fraction of
known interactions. As opposed to a proliferation of various
databases collecting the same or different types of data, an
effort to integrate or cross-link different types of data in
different databases would be very desirable.

5.3. CAPRI (Critical Assessment of Predicted Interactions)

CAPRI ([22]; http://capri.ebi.ac.uk/) is a community-
wide experiment, analogous to Critical Assessment of
Structure Prediction (CASP [169]), but aimed at assessing
the performance of protein–protein docking procedures. Like
CASP, the predictions are performed blindly and assessed
by an independent team by comparison to x-ray structures
available prior to publication. Beginning in 2001, five rounds,
including 19 targets, have been completed and the evaluation
of the first three rounds and a preliminary assessment of the
fourth round have been published [83, 170].

Although the set of 19 target complexes is small and not
representative (e.g. five of the seven targets in round 1 were
antigen–antibody complexes), CAPRI has revealed several
limitations of current docking algorithms and taught us a
few important lessons. One is their poor ability to handle
conformational changes. Most of the docking protocols used
in CAPRI treat the molecular components as rigid bodies
or only perform limited exploration of conformational space.
Approaches that have the ability to explore larger regions of
conformational space (e.g. using essential dynamics [171]) are
being tested. Another limitation is that, as a number of recent
studies have demonstrated [172, 173], with the exception
of the size of the interface, most other parameters (e.g.
hydrogen bonds, contact propensities) are poor discriminators
between specific and non-specific protein association modes.
Although the scoring functions used by CAPRI predictors are
sophisticated, they are still not sufficiently reliable.

The most important lesson from CAPRI is that prior
knowledge about the regions where the component proteins
are likely to interact is tremendously helpful for the docking
calculations. Such knowledge is sometimes available from
biochemical studies, as was the case with a few CAPRI targets.
In other cases, predictors can use computational methods to
infer interaction sites from patterns of sequence conservation
and sequence signatures [174], correlated mutations [65],
homology modeling [72], or threading [76]. Although these
methods do have their own limitations, combining interaction
site prediction with docking procedures appears to be a very
effective way to obtain accurate predictions even for difficult
targets.

6. Experimental determination of protein–protein
interactions

A comprehensive characterization of protein–protein
interactions involves qualitative information such
as interaction partners, quantitative information on their
kinetic and thermodynamic properties as well as structural
descriptions at different levels of resolution. Computational
methods and experimental techniques complement each other.
While theoretical methods fail to give a complete and accurate
picture, experimental methods are costly and time consuming
and can only be applied to a small subset of all proteins. Thus,
computational methods can help prioritize interesting targets
that can then be studied by experiment. Furthermore, most
prediction methods have been designed to benefit from coarse
experimental data.

Recent experimental approaches have, for the first
time, enabled researchers to obtain a qualitative picture of
interactions on a genomic scale. However, the number of
experimental methods for studying protein interactions is too
large for a comprehensive overview to be presented here.
Thus, we will focus on recent developments regarding larger
molecular assemblies at various levels of resolution, their
capabilities and their limitations.

6.1. Atomic level

While the library of solved protein structures appears to be
essentially complete for single domain proteins [175], this
is far from being true for protein–protein complex structures.
True macromolecular protein complexes represent only a small
fraction of the currently 27 570 entries (October 2004) in the
Protein Data Bank (PDB). The PDB [176] has a bias toward
proteins that are easy to express, purify and crystallize, and a
negative bias toward membrane proteins—and protein–protein
complexes. As of October 2004, 18 930 macromolecular
assemblies from 29 277 different PDB files (including obsolete
ones) are present in the PQS server [168], and this number
includes redundant and biologically non-relevant complexes.

Most of the currently available structures have been
solved by x-ray crystallography (23 561) or nuclear magnetic
resonance spectrometry (4009). To obtain an x-ray
structure, several milligrams of the highly purified protein–
protein complex are needed and conditions favorable for
crystallization have to be found. Certain types of complexes,
e.g. membrane proteins, virus envelopes, weak and transient
complexes are particularly difficult to crystallize. Larger
assemblies tend to give small crystals and large unit cells;
these crystals are often weakly diffracting and more sensitive to
radiation [177]. Moreover, not all complexes crystallize, and if
they do, it may not be in a biologically relevant conformation.
Due to their high-resolution, x-ray structures are still assumed
to be the ‘gold standard’ (for a review see [177]) and even
large complexes as RNA polymerase, ribosomal subunits, the
complete ribosome, a proteasome and the GroEL chaperonin
[40] have been solved by x-ray. Nuclear magnetic resonance
(NMR), unlike x-ray crystallography, was limited to relatively
small proteins (300 amino acids, 30–40 kDa) for a long time
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[178]. The development of TROSY (transverse relaxation-
optimized spectroscopy) [179] has opened up the possibility of
using NMR for larger protein assemblies (Mr > 100 kDa). The
100 kDa structure of GroES with GroEL, a 14-mer resulted in a
well-resolved 1H–15N spectrum [180] and is only one example
out of many [178].

A variety of other well-described methods can provide
at least some information on the identity of the interacting
residues, including site-directed mutagenesis [181] and
fluorescence resonance energy transfer (FRET) [182]. FRET
can be used to determine the distance between labeled groups
of interacting proteins [183]. Hybrid techniques combining
chemical crosslinking with subsequent mass spectrometric
identification of the crosslinked peptides after proteolytic
digestion appear especially well-suited to capture information
on residues involved in transient complexes [184, 185]. An
interesting technique for the quick detection of interfacial
residues is based on cross-saturation effects coupled with
TROSY experiments [186]. It was applied to determine
the interface region of the FB–Fc fragment complex (Mr =
64 kDa) and in several other recent studies [187, 188].

6.2. True interfaces versus crystal contacts

Crystal contacts are artifacts that only appear upon
crystallization of proteins. The forces acting at these interfaces
are considered too weak to form at cellular concentrations
[189]. The number and location of the artificial contacts can
vary according to the crystal symmetry.

The discrimination between biological interfaces and
crystal contacts in x-ray structures of protein complexes is
a difficult task. Because biological interfaces tend to be
larger than interfaces arising from crystal contacts, the size
of the interface is the best discriminator, providing an error
rate of ∼15%. This result can be further improved by
the use of a statistical potential [172]. When biological
and crystal dimers having large interfaces (and therefore not
distinguishable by interface size) were investigated, it was
found that a combination of the non-polar interface area
and the fraction of buried interface atoms correctly assigns
88% of the biological dimers and 77% of the crystal dimers.
These success rates increased to 93–95% when the residue
propensity score of the interfaces was taken into consideration
[190]. Interfaces from transient complexes often show a high
similarity to crystal contacts, making the identification of these
interfaces particularly difficult [107].

6.3. Shape characterization

At a lower level of resolution, methods such as electron
microscopy (EM) and its subclasses single-particle EM and
electron tomography can provide information on the overall
shape and symmetry of a protein–protein complex which is
often sufficient to assemble high-resolution structures of the
individual components into larger complexes.

Electron tomography is used to study very large
assemblies like organelles in a cellular context at resolutions
of 50 Å [191], but could soon reach 20 Å that was

formerly the domain of EM. As EM can only produce two-
dimensional images, images at many different orientations
are needed to reconstruct the three-dimensional structure
of the molecule. Furthermore, the sample is damaged
by radiation during the procedure, and therefore requires
averaging over images from different molecules. While
the resolution of non-crystalline probes is generally too low
(∼20 Å), two-dimensional crystals reach resolutions high
enough to rebuild the backbone structure (bacteriorhodopsin
[192], a/b tubulin [193]). For particles larger than ∼300 kDa,
single-particle cryo-EM techniques can achieve resolutions
up to approximately 5 Å. This is still not sufficient for an
atomic structure but computational methods are used quite
successfully to dock protein structures or models into the
electron density maps [194]. Examples of difficult cases
are the membrane proteins of the dengue virus [195] and
bacteriorhodopsin [196]. Although single-particle EM is still
very time-consuming compared to x-ray crystallography and
NMR techniques, it is a very powerful technique, and due
to automation efforts could soon match the high-throughput
speed of the other methods [197].

6.4. Interaction partner level

An even lower level of resolution models that is applicable
on a genomic scale is provided by methods that obtain
qualitative information about the identity of the interaction
partners. Combinations of MS with affinity purification
techniques (for a recent review see [198]) have improved
rapidly. Tandem affinity purification (TAP) uses a bait protein
that is linked to a tag consisting of two parts, with each part
being recognized in a separate affinity purification step. This
bait protein is recovered from a whole cell lysate, thereby
allowing complexes to be analyzed in their normal cellular
milieu. Purification is performed under mild conditions so
that interacting proteins stay associated and can subsequently
be characterized by mass spectrometry. The tagging system
is particularly important for the quality of the data. Non-
physiological levels of the bait protein can lead to artifacts.
Tagging systems specific for protein–protein complexes are
under investigation [182]. Although binary interactions of
larger complexes cannot be studied separately, the method can
capture large assemblies, e.g. the complete human spliceosome
with its ∼100 proteins [199, 200]. Other examples include the
characterization of the highly symmetrical yeast nuclear pore
which consists of various copies of only ∼30 components
[201]. For transient and weak interactions, chemical cross-
linking coupled with mass spectrometry appears to be the
method of choice.

For studying binary protein interactions at the genomic
level, the yeast two-hybrid technique [4] was the first, and is
still the most widespread method. It is based on the modular
nature of yeast transcriptional activators, consisting of a DNA-
binding domain and an activation domain. A protein of interest
is fused to the DNA-binding domain and another protein to the
activation domain. If the two proteins bind to each other, the
two activation factor domains are brought into close proximity
and the activity of the transcriptional activator is restored,
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resulting in the transcription of a reporter gene. Whole cDNA
libraries with proteins fused to the activation domain can be
screened using yeast cells that express the protein of interest
fused to a DNA-binding protein. Using strong promoters, even
weakly interacting proteins can be detected. As the interaction
takes place in the nucleus of the yeast cell and not in its
biological context, there are limitations to the types of proteins
that can be investigated, and a number of circumstances can
also lead to false positive results.

6.5. Applications to genomes

The first large-scale interaction map of the S. cerevisiae
proteome [8, 10] was obtained by using the yeast two-
hybrid method. Two recent MS-based large-scale efforts
analyzed the yeast proteome as well. In one, TAP-tagged
proteins were used to identify interacting proteins [9]. The
other approach used single-step immunopurification and
LC-MS/MS (integrated liquid chromatography with mass
spectrometry) [11]. The main difference between the two
methods is the way the tagged ‘baits’ are expressed. In the
former work, an endogenous promoter is used, while the
latter employs inducible over-expression that can lead to an
over-representation of interactions that are not seen in the
biological system. The overlap of the results obtained by both
the methods was quite small. A comprehensive comparison
of results from the yeast two-hybrid investigation with the
mass spectrometric investigations and others revealed only
marginal overlap between the techniques [12]. The percentage
of interactions predicted by more than two methods is low,
and only 4.5% of the interactions detected by small-scale
experiments and high-throughput methods could be found
[165]. Systematic investigation of the four large-scale yeast
related screenings in comparison with the MIPS database
revealed that the accuracy could be significantly improved by
combining two or even three data sets from different methods.

6.6. Kinetic and thermodynamic properties

Although some of the methods mentioned above, such as
the yeast two-hybrid approach, give semi-quantitative results,
the kinetic and thermodynamic description of protein–protein
complexes is a field in its own right. Isothermal titration
calorimetry (ITC) measures the heat created upon complex
formation and allows for the determination of both the
binding constant and the enthalpy of binding [202]. Binding
constants in the order of 109 M, common for enzyme–inhibitor
complexes and high-affinity antibodies, cannot be determined
by this method. Surface plasmon resonance (SPR) measures
the binding affinity of a molecule to a surface-immobilized
receptor in real time and also allows the study of the dynamics
of protein interactions [203]. Finally, an emerging and
very promising technique based on single molecule force
microscopy (FM) [204] should be mentioned: it allows for the
direct determination of binding forces. Using FM, mechanical
properties of single molecules can be investigated (for a review
see [205]). When the force needed to break intermolecular
bonds is compared to a known reference bond, e.g. a short
DNA duplex, it is possible to measure the unbinding force of

the complex [206]. This method was used to study specific
versus non-specific binding, and with modern chip technology,
such experiments can be carried out in a parallel fashion and
are therefore capable of high-throughput [207].

7. What can we learn from interaction networks?

The network representation of the pairwise protein–protein
interactions existent in an organism provides a powerful
framework to study various biological concepts [208]. Some
methods take advantage of topological features of interaction
networks to predict the function of uncharacterized proteins
[209, 210] or to determine novel protein complexes [211].
Other methods transfer interaction networks from one species
to another [212–214]. But, most importantly, a network of
physical interactions between proteins is a necessary (although
obviously not sufficient) step toward whole cell modeling
[215].

8. Summary and outlook

Of late, due their biological importance, protein–protein
interactions have been the object of increasing attention,
especially as they relate to interactions and associations in the
entire proteome. Both large-scale experimental and theoretical
approaches have progressed in recent years but still much
further development is required. A key condition for success
is the development of large-scale experimental benchmarks
by which the accuracy of high-throughput approaches can be
assessed. With regard to computational methods, combined
approaches that can reasonably accurately identify putative
interacting regions, followed by either homology modeling or
multimeric threading, are likely to be the most successful in
the short term. Such methods are, however, limited (especially
those that attempt to predict quaternary structure) by the library
of already solved folds. Docking of proteins on a genome
scale is a far more difficult problem. An accurate solution will
require the development of better scoring functions as well as
techniques that can remodel the side-chains and/or backbone
as the protein complex adjusts from the unbound to the bound
state. (Even for single proteins, there are a few algorithms
that do a good job when significant backbone rearrangement
occurs.) Thus, while some progress has been made, the field is
clearly in its infancy and much work will be required to bring
the prediction of protein–protein interactions to a robust and
reliable state.

Glossary

Conserved residues. Residues of proteins that are
evolutionarily conserved across members of a protein family
(often including proteins with the same function from
different species).

Experimental hot spots. Residues at protein–protein
interfaces that contribute significantly to the binding affinity
of the complex, measured by the drop in the binding affinity
when the residue is mutated to alanine.
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High-throughput. A class of experimental techniques,
distinguished by the ability to characterize a very large
number of proteins or genes (such as an entire genome) in a
short time.

Interactome. The network of all interactions between
molecules (including proteins, nucleic acids and small
organic compounds) in an organism.

Interolog. An interaction between two proteins that have
similarly interacting counterparts with similar functions in an
evolutionarily related species.

Motif. A recurring pattern that usually correlates with a
particular function.

Obligate interface. Interface between two proteins that
form a permanent, stable complex, as opposed to transient
interactions.

Oligomeric (homo- or hetero-). Consisting of a small
number of components, which can either be identical (in
homo-oligomers) or different (in hetero-oligomers).

Proteomics. The study of the proteome, i.e. the full set of
proteins encoded by a genome.

Residue propensity. The tendency of a particular residue to
exhibit a certain property, e.g. to appear in specific structural
elements or at specific sites of a protein.
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