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ABSTRACT The amino acid composition of intrinsically disordered proteins and protein segments characteristically differs from
that of ordered proteins. This observation forms the basis of several disorder predictionmethods. These, however, usually perform
worse for smaller proteins (or segments) than for larger ones. We show that the regions of amino acid composition space
corresponding to ordered and disordered proteins overlap with each other, and the extent of the overlap (the ‘‘twilight zone’’) is
larger for short than for long chains. Toexplain this finding,weused two-dimensional latticemodel proteins containinghydrophobic,
polar, and charged monomers and revealed the relation among chain length, amino acid composition, and disorder. Because the
number of chain configurations exponentially grows with chain length, a larger fraction of longer chains can reach a low-energy,
ordered state than do shorter chains. The amount of information carried by the amino acid composition about whether a protein or
segment is (dis)ordered grows with increasing chain length. Smaller proteins rely more on specific interactions for stability, which
limits the possible accuracy of disorder prediction methods. For proteins in the ‘‘twilight zone’’, size can determine order, as
illustrated by the example of two-state homodimers.

INTRODUCTION

Intrinsically disordered (also called unstructured) proteins are

characterized by a lack of stable secondary and tertiary

structure under physiological conditions in the absence of a

binding partner (1–3). Structural disorder can be assessed by

various experimental methods including x-ray crystallogra-

phy, NMR, circular dichroism, and hydrodynamic measure-

ments (4). Intrinsically disordered proteins, and those having

functionally important disordered regions, form a significant

fraction of proteomes (3,5); e.g., it has been estimated that

;14% of Escherichia coli and 50–60% of yeast proteins

contain at least one long (.30 residues) disordered segment

(6). Because of their structural malleability (7), intrinsically

disordered proteins are often involved in protein-protein in-

teractions (8,9) with multiple binding partners (10–12). They

are associated with a wide range of cellular functions (13), the

most common being the regulation of transcription and

translation, cellular signal transduction, protein phosphoryl-

ation, the storage of small molecules, and the regulation of the

self-assembly of large multiprotein complexes (14–16).

The amino acid composition of disordered proteins/regions

characteristically differs from that of ordered ones, with dis-

order-promoting residues (A, R,G,Q, S, P, E,K) enriched and

order-promoting residues (W, C, F, I, Y, V, L, N) depleted in

disordered proteins (3). A number of computational methods

have been developed to predict disordered proteins or disor-

dered regions in otherwise ordered proteins (see Ferron et al.

(17) for a review). Most disorder-prediction methods rely at

least partly on amino acid composition, either directly (18,19)

or indirectly. A number of methods employ various scales or

scores assigned to each of the 20 amino acids. These scales

may be based on the physicochemical properties of amino

acids, as in PONDR (3,20), their occurrence in ordered versus

disordered segments, as in Globplot (21), etc. The actual al-

gorithm employed for classification may be based on a simple

linear combination of the input variables, but it may use so-

phisticated methods such as a support vector machine, as in

Disopred2 (5) or a neural network, as in various versions of

PONDR (3,15), Disembl (22) or RONN (23). Regardless of

the scale and the algorithm used, the final output from the

prediction method often depends only on the amino acid

composition of the protein or segment under study; the various

methods just provide different mappings of the amino acid

composition space to a parameter describing order/disorder.

Some methods only provide predictions for entire protein

chains (24,25). Most methods, however, provide a local

measure of disorder and try to identify disordered segments of

the chain. The local measures are often calculated using a

window that slides along the sequence and assigns a score to

the middle residue based on the other amino acids within the

window. Many methods do not utilize the actual order of

residues within the sliding window; the score assigned to the

middle residue depends only on the amino acid composition

of the segment enclosed by the window.

An earlier comparative study of the accuracy of several

disorder prediction methods found an increase in prediction

accuracy with increasing length of the disordered regions to

be predicted (26). The comparison of the performance of six

predictors tested in the CASP5 experiment showed that most

predictors were significantly less accurate for short (,31

residues) than for long disordered regions (27,28). Because of

the difficulty of predicting short disordered regions, a method

was developed that used length-dependent parameters to

optimize prediction accuracy for both long and short disor-

dered regions (25,29).
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The lower accuracy of prediction of short disordered re-

gions was attributed to the variation of amino acid composi-

tions and sequence properties among disordered regions of

different lengths (29). However, the difficulty of predicting

disorder on short regions or small proteins may have a more

fundamental basis. When disorder was predicted for whole

chains by estimating the pairwise energy content from the

amino acid composition in the IUPRED method, a greater

overlapwas found in the distribution of estimated energies for

short chains than for long chains (30). This suggests that or-

dered and disordered sequences occupy overlapping regions

in amino acid composition space, and the extent of the overlap

varies with chain (or segment) length.

The charge-hydrophobicity plot, introduced by Uversky

et al. (31), is a special projection of amino acid composition

space (its special property is that the absolute value of the

mean net charge is calculated). It was found that small,

globular, folded proteins and natively unfolded proteins oc-

cupy distinct regions on the charge-hydrophobicity plot, and

there is a very sharp boundary between the two regions,

leading to an almost perfect separation of the two sets (31).

The FoldIndex disorder prediction method uses the charge-

hydrophobicity plot and classifies proteins or long segments

as ordered or disordered based on which side of the boundary

line they appear (32). However, FoldIndex was found to have

a 23% false-negative and a 10% false-positive rate, which

indicates that the separation is not perfect. In another study by

Oldfield et al. (33), similar false-positive and false-negative

rates were found when the boundary line on the charge-hy-

drophobicity plot was used for classification. By excluding

proteins in a boundary region where the two classes were

found to overlap, the false-negative and false-positive rates

dropped to 5% and 3%, respectively, but this came at the price

of excluding half of the proteins from the analysis (33). Using

a larger set of ordered and disordered proteins, Garbuzynskiy

et al. (34) also observed a significant overlap between the two

classes on the charge-hydrophobicity plot.

Although the charge-hydrophobicity plot is a projection of

amino acid composition space, it is reasonable to assume that

the overlap between the classes of ordered and disordered

proteins is also present in the full 20-dimensional amino acid

composition space. The increasing difficulty of distinguishing

ordered from disordered proteins or segments with decreasing

chain length suggests that the overlap is stronger for shorter

chains or segments. However, to our knowledge, this relation

has not yet been investigated.

The existence of two-state homodimers, i.e., proteins that

are disordered asmonomers but fold (and become ordered) on

homodimerization (35–37), makes it abundantly clear that

amino acid composition alone does not determine whether a

protein is ordered or disordered. Obviously, the amino acid

composition of a homodimer is exactly the same as that of the

monomer; the switch from the disordered to the ordered state

observed with two-state homodimers is a consequence of the

doubling of the size of the protein. This fact also demonstrates

that protein size (i.e., the total number of amino acids) can

have a tremendous influence on order/disorder.

Here, we use amino acid compositions of actual ordered

and disordered proteins and segments to describe and char-

acterize the overlap between the corresponding regions of

amino acid composition space, and we investigate the de-

pendence of the extent of the overlap on chain/segment

length. To identify the possible reasons for the overlap and its

dependence on chain length, we used simplified model pro-

teins to see how amino acid composition determines order/

disorder in chains of various lengths. A full mapping of amino

acid composition space to the structural property of order/

disorder is impossible for real proteins because existing pro-

teins represent only a very limited sampling of amino acid

composition space. Therefore, we turned to two-dimensional

(2D) lattice models with reduced alphabets where amino acid

composition space can be fully explored, and the fraction of

disordered proteins among proteins with any given amino

acid composition can be accurately determined.

The simplest 2D lattice model of proteins is the hydro-

phobic-polar (HP) model (38). This model contains only two

types of residues: H (hydrophobic) and P (polar). The con-

formation of the chain is restricted to a 2D square lattice, and

the only (favorable) interaction is between adjacent H resi-

dues. Despite their extreme simplicity, the HP model and

other simple exact models display many important properties

of real proteins and have been tremendously useful in the

theoretical analysis of protein folding (39). For chain lengths

for which exhaustive enumeration is possible (up to ;25

residues), 2D lattice models more accurately represent the

physically important surface-interior ratios of proteins than do

three-dimensional models (38), and the length distributions of

helices and sheets that appear in 2D lattice models are also

similar to those of real proteins (40).

For the study of protein disorder, the traditional HP model

is limited because it does not include the effect of charged

residues. A model on a cubic lattice with a three-letter al-

phabet, i.e., hydrophobic, positively charged, and negatively

charged,was used earlier for the study of salt bridges (41), and

a 2D model with a four-letter alphabet (hydrophobic, polar,

positive, and negative) was used in a few studies of protein

evolution and aggregation (42–44). Here, we employ the

model with a three-letter alphabet, referred to as the HPN

model, on a 2D lattice.

METHODS

Protein sets

To obtain a set of disordered proteins and segments, disordered segments at

least 20 residues long were extracted from the DisProt database (45), v3.5.

This resulted in 303 sequences. A set of ordered proteins was created by

extracting all entries corresponding to single-chain proteins containing no

nonstandard residues from the Protein Data Bank (46)). Only single-chain

entries were used to avoid including chains that are disordered as monomers

and fold only on binding. This resulted in 4041 sequences. The chains in both
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sets were divided into five bins by length. The size of the ordered set in each

bin was significantly larger than the corresponding disordered set. For an

unbiased analysis, balanced data sets (sets with the same number of ordered

and disordered proteins) were desirable. Therefore, the ordered sets were

culled by the following procedure: pairwise Euclidean distances in the amino

acid composition space were calculated among all sequences in the bin, and

sequences closest to another sequence were removed one by one until the

desired target set size was reached. In the end, the bins corresponding to

lengths 20–50, 50–99, 100–199, 200–299, and $300 contained 194, 184,

126, 64, and 38 proteins, respectively, with an equal number of ordered and

disordered proteins in each bin. See Supplementary Material, Data S1, for

listings of proteins in each set.

Charge-hydrophobicity plots

The hydrophobicity of a sequence was calculated by summing up the values

of the Kyte-Doolittle hydrophobicity scale (47), normalized to the [0,1] in-

terval, for the residues in the sequence. Charge was defined as the absolute

value of nR 1 nK � nD � nE where nX denotes the number of X residues in a

sequence. For the charge-hydrophobicity plot, both charge and hydropho-

bicity were divided by the chain length.

Lattice models

Two types of 2D lattice models were used: the traditional HPmodel (38); and

another model having three residue types: hydrophobic, positively charged,

and negatively charged (HPN model). The interaction energies between

residues were set as follows; in the HP model, EHH¼�1, EHP¼ EPP¼ 0. In

the HPNmodel, EHH¼�1, EPN¼�0.75, EPP¼ ENN¼ 0.75, EHP¼ EHN¼
0. Changing these values, including the ratio of EPN to EHH, does not appear

to change our results qualitatively.

Sequence and structure space were explored with different methods de-

pending on model type and chain length. For HP models, all possible se-

quences were generated for chains of length 4 to 23, and full enumeration

was used to determine the ground state. Maximum contact sets (48) were

used to make the search efficient. For chains of length 30, 40, and 50, se-

quence space was randomly sampled, generating 1000 sequences for every

possible H fraction (or all sequences if their number was ,1000). A Monte

Carlo search with simulated annealing was used to find the minimum energy

state for these long chains. For HPN models, all possible sequences were

generated for chains up to 14 residues; random sampling was used for chains

of length 15 to 20 as well as 30, 40, and 50, generating 1000 sequences for all

possible compositions (or all sequences where their number was,1000). To

exploit the symmetry of positive and negative charges, only sequences with a

nonnegative total charge were considered. To explore structure space, enu-

meration was used for chains up to 20 residues, using contact sets (48), and

Monte Carlo simulated annealing for chains of length 30, 40, and 50.

For theMonte Carlo optimizations, the move set defined by Chan and Dill

(49) was used. A simulated annealing protocol was performed; the temper-

ature was reduced from T ¼ 1.0 to ;T ¼ 0.1 in 100 steps according to a

geometric series. A series of tests were performed for nine 50-residue chains

with minimum energies determined by equienergy sampling (50) as well as

200 23-residue sequences where exact enumeration could also be performed.

The lowest-energy conformation in a Monte Carlo trajectory of 1 million

steps was found to be a good estimate of the actual ground state energy in

most cases, e.g., the estimated energy was within two energy units of the

actual energy for seven of the nine 50-residue sequences and was accurate for

96.5% of the 23-residue sequences.

Information theoretical analysis of
classification problems

Shannon’s definitions (51) were used to calculate information contents and

mutual information. For a classification problem, we let C denote a random

variable whose possible values are assigned to the classes to be predicted. To

correctly assign a class to an object, we need H(C)¼�+c p(c) log2 p(c) bits

of information, where p denotes the probability distribution function of C. If

we have a predictor variable X, we can then calculate the amount of infor-

mation about C provided by X using the formula for the mutual information:

I(C;X)¼H(C)�H(CjX)¼+x+c p(x,c) log2(p(x,c)/p(x)p(c)), whereH(CjX)
denotes the entropy ofC conditional on X; p(x,c) denotes the joint probability

distribution function of X and C; and p(x) and p(c) denote the marginal

probability distribution function of X and C, respectively. For two predictor

variables X and Y, the extra information provided by Y over that provided by

X is given by the conditional mutual information I(C; YjX).

RESULTS

Overlap in amino acid composition space
between ordered and disordered proteins

Amino acid composition space is a multidimensional space

with each axis representing the fraction of a given amino acid in

a given sequence. Because the fractions of the 20 amino acids

sumup to1, any amino acid composition corresponds to a point

on a 19-dimensional simplex in20-dimensional space.Wemay

refer to this simplex as the ‘‘amino acid composition simplex’’.

The points representing the amino acid compositions of a

class of proteins can be considered samples from an under-

lying probability density function in amino acid composition

space. For an efficient classification of proteins based on

amino acid composition, the density functions corresponding

to different classes should have as little overlap as possible.

To determine the extent of overlap between the hypothet-

ical density functions of ordered and disordered proteins, we

first created sets of ordered and disordered proteins of various

lengths as described in the Methods section. We divided the

proteins into five bins by chain (or segment) length and culled

the sets so that each bin contained an equal number of ordered

and disordered proteins. The bins corresponded to lengths

,50, 50–99, 100–199, 200–299, and .299, respectively.

The extent of overlap between ordered and disordered pro-

teins in each binwas characterized by calculating the error rate

of k-nearest-neighbor (kNN) classification. In kNN classifi-

cation, the class of an object is predicted to be the same as the

most frequent class among its k nearest neighbors in feature

space. Here, we used the 19-dimensional amino acid com-

position simplex and the Euclidean distance metric. Intui-

tively, the larger the error rate of kNN classification, the more

the points from the two sets are mixed in space, i.e., the larger

the overlap between the sets. Fig. 1 shows the results for k¼ 1.

It is clearly seen that the error rate monotonically decreases as

chain length grows. In other words, the overlap between the

set of ordered and the set of disordered proteins in amino acid

composition space is large for short proteins and decreases

with growing chain length.

To get a feeling for the distribution of points corresponding

to ordered and disordered proteins in amino acid composition

space and how much the two sets overlap, we plotted the

points on a charge-hydrophobicity plot, which can be con-

sidered a projection of amino acid composition space, apart
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from the fact that the absolute value of the charge is taken.

Charge-hydrophobicity plots have been shown to discrimi-

nate well between ordered and disordered proteins (31,33)

and are even the basis of the FoldIndex disorder prediction

method (32). Fig. 2, A–E shows the plots for the proteins in

each length bin.

By visual inspection of the plots, the relation between

overlap and chain length is clear. Sequences with large hy-

drophobicity and low charge are mostly ordered, whereas

those with small hydrophobicity and high charge are mostly

disordered. Between these two extremes, there is a transition

region, a ‘‘twilight zone’’, where the two types of proteins are

mixed. The width of this twilight zone decreases with in-

creasing chain length, changing from very wide for short

proteins to very narrow for long ones.

To obtain a more quantitative characterization of the rela-

tion between chain length and twilight zonewidth, we applied

logistic regression to each dataset. In logistic regression, a

logistic (sigmoid) function, here of the form 1/(11 exp(ax1
by1 c)), with x being the hydrophobicity and y the charge, is
fitted to a binary outcome variable representing each class; we

assigned values of 0 to ordered proteins and 1 to disordered

ones. The resulting function describes the probability of a

protein with the specified hydrophobicity and charge being

disordered. In the plots in Fig. 2, A–E gray shading indicates

the probability function obtained from logistic regression.

The medium gray band represents probabilities between 0.2

and 0.8 and is defined as the actual twilight zone. The nar-

rowing of this band is clearly seen as chain length grows. Fig.

2 F shows that the percentage of points in the twilight zone

also decreases as the chain length grows, demonstrating that

the observed sharpening is not a result of a ‘‘shrinking’’ of the

plot but that the two protein classes indeed separate better

when longer chains are considered.

Although the position of the twilight zone also appears to

be slightly different for different chain lengths, a clear trend

cannot be identified.

Lattice model studies

Definition of disorder for model proteins

To study the relation between amino acid composition and

disorder in lattice models, first of all we need to define dis-

order for 2D latticemodels. Intrinsic disorder has usually been

defined as the lack of a well-defined, compact native structure

under physiological conditions (1,3). In terms of the energy

landscape of 2D lattice models, this may be interpreted as a

FIGURE 1 The error rate of kNN classification of ordered and disordered

proteins in the 19-dimensional amino acid composition simplex, with k ¼ 1,

for proteins in five length bins. Results with k ¼ 3 are similar (not shown).

The error rate decreases with increasing chain length because of better

separation of the two groups.

FIGURE 2 (A–E) Charge-hydrophobicity
plots of proteins in five chain length bins.

White circles indicate ordered proteins, and

black circles indicate disordered ones. The

gray shading represents a bivariate linear

logistic function fitted to the data after

assigning 1s to disordered proteins and 0s

to ordered ones. The grayscale is defined as

in Fig. 4. The medium gray region, corre-

sponding to a probability of disorder be-

tween 0.2 and 0.8, is defined as the twilight

zone. (F) The fraction of proteins in the

twilight zone in the five chain length bins.

With increasing chain length, the twilight

zone becomes narrower.
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highly degenerate ground state or a large number of low-en-

ergy states corresponding to a number of diverse, noncompact

structures.

Here, we use a simple definition of disorder that is con-

sistent with this picture. A 2D lattice sequence is considered

disordered when the ground state energy per residueEground/L
is higher than a predefined, fixed threshold. The rationale for

this definition is that for a protein to be ordered, a significant

fraction of its residues should be bound by other residues.

Residues that are not bound by other residues are usually free

to fluctuate and, therefore, contribute to disorder. The quantity

Eground/L is in fact ameasure of the thermodynamic stability of

the model protein. Namely, the free energy difference be-

tween the folded and the unfolded state isDF¼DE� TDS. If
we assume that the unfolded state has an energy Eunfolded¼ 0

and the ground (i.e., folded) state has an entropy S ¼ 0, then

DF ¼ Eground 1 TSunfolded. But Sunfolded is approximately

proportional to the chain length L, i.e., Sunfolded¼ aL, where a
is a proportionality constant. Substituting aL for Sunfolded and
dividing the formula forDFbyL,weobtainDF/L¼Eground/L1
aT. Thus, the sign of DF depends on whether Eground/L is

below or above �aT, a constant at any given temperature. A

low value of �Eground/L therefore indicates a low stability

against unfolding; i.e., the protein will be natively unfolded

(52). Fig. 3 shows a few examples of ground states of disor-

dered and ordered HP and HPN sequences.

When the interaction energies specified in the Methods

section were used, the threshold for the ground state energy

per residue (corresponding to �aT in the derivation above)

used to define disorder was set to�0.3 by trial and error. This

threshold divides the sequence space of HP models into two

roughly equal parts, making the probability ;50% that a

random sequence is ordered. Also, by this threshold, most

model proteins with .40% hydrophobic residues get classi-

fied as ordered, in agreement with the typical fraction of hy-

drophobic residues in real ordered proteins (53). Different

thresholds do not change our results qualitatively; the plots

shown in the following figures simply get shifted.

HP model

The traditional HP model contains two types of monomers:

the H and the P. The only interaction is between the H mon-

omers: EHH ¼ �1. As described in the Methods section, we

generated all possible sequences with lengths 4 to 23 and

sampled sequence space for lengths 30, 40, and 50. The

ground state of each sequence was found by enumeration for

lengths 4 to 23 and estimated by Monte Carlo search for

lengths 30, 40, and 50. Each sequence was classified as either

ordered or disordered. The amino acid composition simplex

of HP sequences is one-dimensional, and is described here by

the fraction of H residues.

Fig. 4 A shows the fraction of disordered sequences among

sequences with a given H fraction and length. A bivariate

quadratic logistic function fits the data very well and is vi-

sualized in Fig. 4 A by shades of gray. All sequences with low

H fractions are disordered, and all sequences with high H

fractions are ordered. Between the two extremes, there is a

twilight zone where a fraction of all sequences with a given H

fraction are disordered. In Fig. 4 A, a medium gray band,

corresponding to fractions 0.2 to 0.8, indicates this twilight

zone. In this zone, H fraction alone is not sufficient to tell

whether a sequence is ordered; this depends on the specific

order of monomers in the sequence. For short chains, the

twilight zone is wide (note that the width is measured along

vertical lines in Fig. 4 A), and as the chain grows, it becomes

narrower, and its midpoint shifts to lower H fractions. For

longer chains, the midpoint of the twilight zone seems to

converge to around H-fraction ¼ 0.4.

HPN model

It is a general observation that disordered proteins contain

more charged residues and fewer hydrophobic residues than

ordered ones, as often illustrated by charge-hydrophobicity

plots. To reproduce this behavior with 2D lattice models, we

introduced amodel, called theHPNmodel, with three types of

monomers: hydrophobic (H), positively charged (P), and

negatively charged (N). As described in the Methods section,

we generated all possible sequences for chain lengths 4 to 14

and sampled sequence space for lengths 15 to 20, 30, 40, and

FIGURE 3 Examples of ground states of HP and HPN sequences. Black

circles represent H (hydrophobic) monomers; white circles represent P

(polar) monomers in the HP model. Circles with 1 and � signs inside

represent P (positively charged) and N (negatively charged) monomers,

respectively, in the HPNmodel. (A) A disordered HP model protein (Eground/

L ¼ �0.25); (B) an ordered HP model protein (Eground/L ¼ �0.47); (C) a

disordered HPN model protein (Eground/L ¼ �0.25); (D) an ordered HPN

model protein (Eground/L ¼ �0.43). Although each of these four sequences

has a single ground state, the disordered sequences are very unstable because

they do not have enough stabilizing contacts in their ground state to ensure a

sufficiently low ground state energy for the given chain length.
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50. The ground state was determined by enumeration for

chain lengths up to 20 and estimated by Monte Carlo search

for lengths 30, 40, and 50. For this model, the amino acid

composition simplex is 2D and is described here by the H

fraction and the net charge per residue. It should be noted that

HPN sequences with low H fractions get primarily stabilized

by electrostatic interactions betweenmonomers arranged as in

a salt crystal (Fig. 3 D). Although globular proteins typically
have a hydrophobic core, there are several proteins containing

tandem repeats of alternating charges such as the KEKEmotif

(54). These stretches are thought to form a-helices stabilized
by salt bridges.

Fig. 5 shows the fraction of disordered sequences among

sequences characterized by a given H fraction and net charge

per residue for various chain lengths. A bivariate quadratic

logistic functionof the form1/(11 exp(ax21 by21 cxy1 dx1
ey 1 f)) was fitted to the data and shown by gray shading on

the H fraction versus net charge per residue plane. The qua-

dratic form was used to allow for curved boundaries between

regions of order and disorder. This function fits the data points

extremely well, with the root mean-square of residuals rang-

ing from 0.02 to 0.05. Fig. 5 presents the data for different

chain lengths. For each length, sequences with high hydro-

phobicity and low charge are all ordered, and those with low

hydrophobicity and high charge are all disordered. Between

these two extremes, there is a transition region (twilight zone)

with varying width, shape, and position, where the H fraction

and the net charge per residue are not sufficient to tell whether

a sequence is ordered; it depends on the particular sequence.

Generally, as the chain length grows, the region of all-ordered

sequences grows and occupies an ever-increasing portion

of the plot. The twilight zone shifts toward lower hydro-

phobicites and higher charges, and it also becomes much

narrower.

Lattice models with length-dependent interaction energies

The lattice models presented exhibit a behavior similar to real

proteins regarding the decrease of the width of the twilight

zone as chain length increases. However, the boundary be-

tween regions of order and disorder in the amino acid com-

position space of the lattice models also shifts to lower

hydrophobicities and higher charges as chain length in-

creases, a phenomenon not observed with real proteins. In

fact, the hydrophobic fractions of real proteins depend little on

chain length (53,55), although a maximum somewhere be-

tween 200 and 300 residues was found by Bastolla and

Demetrius (56). On the other hand, the native energy per

residue also tends to be nearly constant for proteins of various

sizes (56,57) despite the fact that the number of contacts per

residue increases (56). This apparent contradiction is resolved

by the finding that the native energy per contact decreases (in

absolute value, i.e., the contacts get weaker) as chain length

grows (56).

The ground state energies of sequences with a given chain

length (L) and number of hydrophobic residues (H) follow a

bell-shaped distribution (Fig. 6). The maximum of this dis-

tribution corresponds to themost frequently occurring ground

state energy, Eground,m. We calculated the most common

ground state energy per contact, Eground,m/C and the most

common ground state energy per residue, Eground,m/L, for all
HP sequences used in ourHPmodel calculations. Fig. 7,A and

B shows the results plotted as a function of the chain length L
and the hydrophobic fraction h ¼ H/L. Clearly, the ground

state energy per contact depends very little on either L or h,
whereas the ground state energy per residue depends on both:

longer chains have lower energies per residue, as do more

hydrophobic chains. This behavior is different from that of

real proteins, where the stability per residue does not depend

much on chain length but the contacts get weaker as chain

length grows.

To compensate for the stability increase (i.e., lower ground

state energy per residue) of our lattice models as chain length

grows, we introduced modified models where the interaction

energies depend on chain length. To find the optimum form

for the length dependence of interaction energies, we used the

observation that the native energy per residue tends to be

nearly constant for real proteins (56,57). For any HP model

sequence, the ground state energy is equal to EHHCHH, where

FIGURE 4 (A) The fraction of disordered sequences among all HP se-

quences with a given length and hydrophobic fraction. A bivariate quadratic

logistic function, visualized here by shades of gray according to the scale on

the right, was fitted to the data. The locations of the data points are indicated

by white crosses. The medium gray band, corresponding to disordered

fractions between 0.2 and 0.8, is defined as the twilight zone. (B) The same

as A but calculated with length-dependent interaction energies (see text).
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CHH is the number of H-H contacts in the ground state, and

EHH is the H-H contact energy (which was set to�1 in the HP

model). For any given chain length L and hydrophobic frac-

tion h, the most frequently occurring value of CHH can be

determined. We denote this value by CHH,m(L,h), and let

g(L,h) ¼ CHH,m(L,h)/L be the most frequent number of H-H

contacts per residue. We found that a quadratic bivariate

function fits g(L,h) very well (see Fig. 11 B). Because the

ground state energy per residue ofmost HP sequences is equal

to EHHg(L,h), we can eliminate the length dependence of the

ground state energy per residue by replacingEHHbyEHH(L)¼
EHHg(L0,h0)/g(L,h0), where L0 is the value of L for which we

want EHH(L) to be equal to EHH, and h0 is the value of hwhere
we want the ground state energies to match those calculated

with the length-independent interaction. Fig. 8 shows the re-

sulting length dependence of the H-H interaction energy with

L0¼ 12 and h0¼ 0.5. Using the length-dependent interaction

energy, we recalculated the ground state energies of all HP

sequences. Fig. 7,C andD, shows Eground,m/C and Eground,m/L
calculated this way. As the figures show, the models now

correctly reflect the behavior of real proteins: the native en-

ergy per residue depends little on chain length, but the con-

tacts get weaker as the chain grows.

For the electrostatic interactions in the HPNmodel, similar

calculations could be carried out and length-dependent forms

of EPN, EPP, and ENN could be introduced. However, for the

sake of simplicity and consistency, we chose to keep the

relative magnitudes of hydrophobic and electrostatic inter-

actions; therefore, we set EPN(L)¼ 0.75EHH(L) and EPP(L)¼
ENN(L) ¼ �EPN(L). Because in this way the interaction en-

ergies are uniformly scaled, the structures of the ground states

remain unchanged.

Using the length-dependent interaction energies, we re-

calculated the fraction of disordered sequences characterized

by a given H fraction (for the HPmodel) or a given H fraction

and net charge per residue (for the HPN model). The results

FIGURE 5 The fraction of disordered

HPN sequences among all sequences with

a given hydrophobic fraction (horizontal
axis) and absolute charge per monomer

(vertical axis) for various chain lengths. A

bivariate quadratic logistic function, visual-

ized here by shades of gray according to the

scale shown in Fig. 4, was fitted to the data.

White crosses indicate the locations of ac-

tual data points. The medium gray region,

representing fractions between 0.2 and 0.8,

is the twilight zone.

FIGURE 6 The distribution of ground state energies over sequences of

length 10 containing five H monomers (black bars) and sequences of length
20 containing 12 H monomers (gray bars).
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are presented in Figs. 4 B and 9 respectively. We found that

the boundary between the ordered and disordered regions in

amino acid composition space still gets sharper with in-

creasing chain length (i.e., the twilight zone gets narrower),

but it does notmove systematically in any direction. Thus, our

lattice models with chain-length-dependent interaction ener-

gies now correctly reflect the behavior of real proteins.

The amount of information about disorder carried by the
amino acid composition

Clearly, the sequence of a (model) protein fully determines its

ground state(s) and its entire behavior, including whether it is

ordered or disordered. We have seen that for sufficiently low

(high) hydrophobicities, all HP model sequences are disor-

dered (ordered), but for medium hydrophobicities, composi-

tion alone does not fully determine order/disorder. But the

composition still carries some information about disorder. If

we were to develop a composition-based disorder prediction

method for HP models, we could predict disorder with an

accuracy that is limited by the amount of information on

disorder that is actually carried by the residue composition.

Taking all possible H fractions equally likely, we calculated

the amount of information needed to correctly classify a HP

sequence with a given length as ordered or disordered (Fig.

10, circles). Almost independently from the chain length, this

amount is close to 1 bit.

Next, using the definitions for mutual information, we

calculated the amount of information on disorder contained in

the residue composition (Fig. 10, solid squares). For short
chains, this amount is;0.5 bits; it increases rapidly as chain

length grows and is above 0.8 bits for longer chains. The rest

of the information needed to correctly classify a sequence is

contained in the particular order of residues. Thus, the order of

the residues contains;0.5 bits of information on disorder for

short chains but,0.2 bits for long chains.

Some of this information can be extracted by smartly de-

fined sequence-dependent quantities. An interesting property

of 2D lattice proteins is that residues i and j (i , j) can be in

contact only if j¼ i1 31 2k, where k is a nonnegative integer.
Using this rule, we can calculate the number of potentially

interacting H-H pairs for any given sequence. This quantity,

which wewill denote byQ, is an upper limit for the number of

H-H contacts in the ground state and therefore carries infor-

mation on whether the sequence is ordered. Using the defi-

nition of conditional mutual information, we calculated the

information on disorder contained in Q on top of that con-

tained in the residue composition (i.e., the H-fraction). Fig. 10

(open squares) shows the result: for short chains, Q contains

extra information of over 0.2 bits, which reduces to below 0.1

bits for longer chains. Thus, for long chains, disorder is almost

fully determined by the residue composition, but for short

chains, the particular order of residues must be used in some

way for a successful prediction of disorder.

FIGURE 7 The most common ground

state energy per contact (A and C) and per

residue (B and D), calculated with length-

independent (A and B) and with length-

dependent (C and D) H-H interaction

energies, as a function of chain length

and hydrophobic fraction, for HP models.

Bivariate quadratic functions were fitted

to the data and are visualized by shades of

gray. The locations of the data points are

indicated by white crosses.

FIGURE 8 The length-dependent H-H interaction energy, defined as

described in the text, plotted as a function of chain length.
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DISCUSSION

Explanations of the observed overlap between
protein classes

In this article, we have demonstrated that the sets of ordered

and disordered proteins (and protein segments) overlap with

each other in amino acid composition space. The extent of the

overlap is large for short proteins (and segments) and de-

creases as chain length increases (Figs. 1 and 2). For long

proteins, the boundary between the ordered/disordered re-

gions is quite sharp.

It is important to find out why the overlap is present. Dis-

order prediction algorithms that use the amino acid compo-

sition as their input become inaccurate when the input amino

acid composition falls in the twilight zone (33). However, the

fact that there is an overlap between the two sets does not

mean that an accurate classification is impossible. One may

suggest that a very sophisticated, nonlinear method might be

able to separate successfully the two classes, provided that

amino acid composition actually determines order/disorder.

But if there is no such determination, i.e., proteins with ex-

actly the same amino acid composition can be either ordered

or disordered, depending on their sequences, then no classi-

fication algorithm that uses amino acid composition alone can

ever succeed in accurately predicting disorder. Therefore, if

we can find the reason for the overlap between the two classes

and understand the role of amino acid composition in deter-

mining order/disorder, then we can estimate the upper limit

for the possible accuracy of disorder prediction methods.

What causes the observed overlap in amino acid compo-

sition space between ordered and disordered proteins, and the

dependence of the width of the twilight zone on protein

length? Several explanations may be proposed.

One explanation could be that the experimental uncertainty

in assessing disorder is larger for small proteins than it is for

large ones. When the presence of disorder is judged from

experimental data, e.g., fluorescence or NMR spectra, the

situation may not be clear-cut. But the boundary between

order and disorder is usually sharper for large proteins: a 100-

residue extended segment should be easy to recognize.

However, when a short peptide is investigated, things get

fuzzier. ‘‘Dual personality’’ fragments, which seem ordered

in some experiments and disordered in others, have a length

distribution that is heavily skewed toward shorter fragments

(58). Also, smaller proteins have more cysteines per residue,

and more disulfide bridges per cysteine, than longer ones (56)

FIGURE 9 The fraction of disordered

HPN sequences, calculated with the length-

dependent interaction energies (see text),

among all sequences with a given hydropho-

bic fraction (horizontal axis) and absolute

charge per monomer (vertical axis) for var-

ious chain lengths. A bivariate quadratic

logistic function, visualized here by shades

of gray according to the scale shown in Fig.

4, was fitted to the data. White crosses

indicate the locations of actual data points.

The medium gray region, representing frac-

tions between 0.2 and 0.8, is the twilight

zone.

FIGURE 10 Information theoretical quantities related to disorder predic-

tion in HP models, plotted as a function of chain length. The amount of

information (in bits) needed to correctly classify an HP sequence as ordered

or disordered (circles); the information about disorder contained in the

residue composition (solid squares); the extra information (i.e., on top of

that contained by the residue composition) about disorder contained in the

quantity Q (the number of potentially interacting pairs of H residues) (open

squares).
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and often require cofactors for folding (59). Obviously, the

influence of disulfide bridges and cofactors cannot be taken

into account when amino acid compositions are considered.

These uncertainties may cause some of the observed overlap

between ordered and disordered proteins, but we should look

for other explanations as well.

Another explanation might point out that the variance of

amino acid compositions is larger for small proteins than for

large ones. In a naive model of protein sequence generation,

amino acids are drawn from an infinite amino acid pool having

a particular composition. Clearly, the expected amino acid

composition of any sequence generated this way will be equal

to the composition of the pool, but the variance will be pro-

portional to 1/L, whereL is the length of the chain. Thisway, if
we assume that ordered proteins come from a pool with a

different amino acid composition than disordered ones, the

extent of overlap between the two sets will decrease as the

variance of amino acid compositions of both sets decreases

with increasing chain length. But there is no reason to assume

that this model of sequence generation is correct; selective

constraints should definitely apply, and the amino acid com-

position of proteins depends on chain length (53,60).

The explanation we suggest here is that amino acid com-

position alone does not fully determine order/disorder. The

structure of a protein, or the lack of it, is ultimately determined

by its sequence and the specific interactions forming between

the residues. In short chains, the specific interactions are more

important in determining order/disorder than in long chains.

Definition of disorder for model proteins

To study intrinsically disordered proteins using lattice models,

wemust define intrinsic disorder for thesemodels.A disordered

protein is commonly pictured as a mostly extended, highly

fluctuating chain. This implies few interactions per residue, and

this is the basis of our definition. We define sequences with

ground state energy per residue below a specified threshold as

ordered. This definition was inspired by the principle of the

IUPRED disorder prediction algorithm (30): it estimates the

sum of pair interaction energies divided by the length and

predicts order when the estimated value is below a threshold.

The success of IUPRED lends justification to our definition.

It is worth noting that this definition has an interesting

‘‘side effect’’: highly hydrophobic sequences, which have

compact but degenerate ground states, will be considered

ordered. Although this may seem inappropriate, in fact it

agrees well with the intuitive concept of disorder, which im-

plies a mostly extended chain; besides, there are no known

proteins that are highly hydrophobic and still considered

disordered. By our definition, ordered proteins tend to be

more compact than disordered ones, which is consistent with

the general idea of protein order/disorder. For example, the

average size (the larger of the horizontal and vertical exten-

sions) of the ground states of ordered versus disordered

16-residue HP model sequences is 4.28 vs. 4.88, and the cor-

relation coefficient between ground state energy and size is

0.748. It should be noted that although the ground states of

highly hydrophobic sequences are degenerate, their degener-

acy is still very low compared with low-hydrophobicity se-

quences. For example, the 16-residue sequence H16 has 69

ground states, whereas HP14H has 11,752. In fact, by our

definition, order/disorder is strongly related to a low/high

ground state degeneracy; e.g., the average number of ground

states (nground) is 61 vs. 20,543 for ordered versus disordered

16-residueHPmodel sequences, and the correlation coefficient

between ground state energy and log nground is 0.751.
We considered a number of alternative definitions before

deciding in favor of the one we finally adopted. Because in-

trinsically disordered proteins are thought to have a flexible,

fluctuating structure, we may define order/disorder based di-

rectly on the degeneracy of the ground state: e.g., sequences

with a single ground state (also called ‘‘designing sequences’’)

could be defined as ordered, and those with multiple ground

states as disordered. However, the fraction of designing se-

quences among all sequences is very small, e.g., ,4% for

22-residue HP sequences with medium hydrophobicity.

Therefore, by this definition, using the amino acid composition

to predict whether a model protein is ordered or disordered

would be impossible, and no meaningful analysis could be

carried out. For a meaningful analysis, a definition is needed

that classifies a significant fraction of sequences as ordered.

Our definition meets this requirement, and although it is not

directly based on the number of ground states, it uses a param-

eter that is strongly correlated with it (see the example above).

Another possible definition of disorder may be based on a

thermodynamic property, e.g., the folding temperature (Tf, the
temperature above which the unfolded state is dominantly

populated) or the folding free energy (DF). For example,

proteins with a Tf or DF above/below a predefined threshold

could be defined as ordered/disordered. However, for this sort

of definition, sequences with degenerate ground states pose a

problem. They are entropically favored and may therefore be

more stable than nondegenerate ground states. This would

lead to instances where sequences with single ground states

would be classified as disordered and other sequenceswith the

same ground state energy but degenerate ground states as

ordered, clearly an unacceptable situation.

One solution to this problem would be to restrict our

analysis to sequences with unique ground states, as is often

done in applications of 2D HP models (39). However, we are

modeling disordered proteins and therefore want to include

sequences with degenerate ground states. Another solution

would be to arbitrarily pick one of the ground states and

designate it as ‘‘the native state’’ and consider the others

misfolded. But in this treatment, the probability of the ‘‘native

state’’ at any temperature would be,0.5 for sequences with

degenerate ground states, and therefore, they would all be

considered disordered, and the definitionwould be equivalent

to simply defining order/disorder based on whether the se-

quence is designing (see above).
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Finally, a third solution is to define order/disorder based

purely on the ground state energy, thereby accounting for

entropy only implicitly, through its correlation with energy.

This is the solution we chose for our definition. In fact, our

definition is based on a measure of the stability of the folded

state, and, as we have shown in the Results section, it is

equivalent to a DF-based definition at low temperatures.

A limitation of our definition is that it implies a binary

classification of proteins. A structural continuum extending

from tightly folded single domains, through proteins with

long disordered segments to highly extended chains would be

a more appropriate description of the diversity of protein

structures (16). However, our lattice models are highly sim-

plified and cannot be expected to reflect all those complex-

ities.

What model proteins tell us

Real proteins do not sample amino acid composition space

sufficiently to provide us with a full mapping of amino acid

compositions to the classes of order and disorder. Therefore,

we turned to model proteins for a theoretical approach. We

used the well-known HP model to study the influence of hy-

drophobicity and chain length on disorder, and the new HPN

model to also include the influence of charged residues. These

models show a narrowing of the twilight zone with increasing

chain length, and thereby reproduce the behavior of real

proteins. Of course, the length range we studied with model

proteins is much shorter than that of real proteins, but because

of the highly simplified nature of lattice models, their chain

lengths cannot be equated with those of real proteins. Rather,

one monomer of a lattice model can be taken to represent a

longer segment of a real protein, e.g., a secondary structure

element (61). Thus, lattice model chain lengths map to con-

siderably greater chain lengths of real proteins.

What causes the observed shift of the twilight zone toward

lower hydrophobicities in the case of HP model proteins? To

get a deeper insight into what happens, let us examine the

actual ground state energies. We found that a bivariate qua-

dratic function approximates Eground,m(L,H), i.e., the most

frequently occurring ground state energy for chains of length

L with H hydrophobic residues, very well and visualized this

function by shades of gray in Fig. 11 A. As the contour lines
show, the same number of hydrophobic residues can usually

form a configuration of lower energy in longer chains than in

shorter ones. Clearly, longer chains have many more possible

configurations than short ones (the number of distinct self-

avoiding configurations of chains of length L on a 2D square

lattice is proportional to ;2.67L (62)), and therefore have a

higher probability of bringing the hydrophobic residues to-

gether in an energetically favorable arrangement than shorter

chains. Also, longer chains have larger core regions relative to

the surface, which entails that the fraction of residueswith two

contacts relative to those with one contact is larger, leading to

a lower ground state energy.

In addition, the same hydrophobic fraction corresponds to a

higher absolute number of hydrophobic residues in longer

chains,which further lowers the ground state energy attainable

by the chain. In the Results section, we defined the function

g(L,h)¼ CHH,m(L,h)/L, i.e., the most frequent number of H-H

contacts per residue (Fig. 11 B). Looking at the dependence of
g(L,h) on the chain length L, with the hydrophobic fraction h
held constant, we find that for any given hydrophobic fraction,

longer chains tend to formmore H-H contacts per residue, and

therefore reach a lower ground state energy per residue, than

shorter chains. Besides the effect of the growing core region of

the ground state structures, this is also related to the fact that a

higher number of H residues entails that each H residue has

more potential interacting partners, and there is a higher

chance that one or two of the partners will be in a position that

actually makes the contact possible. The increase in the

number of contacts per residue with increasing chain length

has been described for real proteins as well (56).

These considerations indicate that for longermodel proteins,

a lower H-fraction is sufficient to keep the ground state energy

FIGURE 11 (A) The most frequent ground state energy of HP sequences

with a given chain length and number of H monomers. A bivariate quadratic

function, visualized here by shades of gray according to the scale on the

right, was fitted to the data. The locations of data points are indicated by

black crosses. (B) The function g(L,h) ¼ CHH,m(L,h)/L, i.e., the most

frequent number of H-H contacts per residue (see text) in ground states of

HP sequences, as a function of chain length (L) and hydrophobic fraction (h).

A bivariate quadratic function, visualized here by shades of gray according

to the scale shown on the right, was fitted to the data. White crosses indicate

the locations of data points used for the fitting.
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low enough to ensure that the protein be ordered. This leads to

the observed shift of the twilight zone toward lower hydro-

phobicities. In accordance with this result, an early theoretical

model of protein folding also found that, assuming a constant

hydrophobic fraction, longer proteins (up to a large length)

should be more stable (in terms of DF/L) than shorter proteins
(63), which implies that lower hydrophobicity should be suf-

ficient to ensure marginal stability in longer proteins. The fact

that experimental results do not support this finding was at-

tributed to the narrow range of lengths of proteins with known

experimental stabilities (63). We, however, suggest that the

reason lies, at least partly, in the weakening of interactions in

real proteins with increasing protein size (see next section).

The same considerations also explainwhy the twilight zone

gets narrower for longer chains. The number of distinct con-

figurations, e.g., different contact maps, of protein chains

grows exponentially with chain length. Therefore, for any

given residue composition, a longer chain has a greater chance

to find a contact map that ensures a low ground state energy

for the given sequence. And because each H-monomer has

more potential interacting partners, it is easier to find a partner

to form an interaction with. The number of contact maps en-

suring an energetically favorable arrangement for the chain is

higher, and therefore, the chain depends less on specific in-

teractions to attain a low ground state energy. In the end, for

longer chains, the fraction of sequences where the ordered

state depends on specific interactions, i.e., the particular se-

quence, is lower than in shorter chains. In other words, the

twilight zone is narrower.

The narrowing of the twilight zone with increasing chain

length can also be understood by considering the distribution

of energy contributions to the total ground state energy of a

protein. Let Ei (i¼ 1. . .L) denote the contribution of residue i
to the total energy of a protein of length L; then the criterion

for disorder can be written as Eground/L¼ ÆEiæi .�0.3. If the

Eis are considered random variables and are assumed to be

identically distributed (a plausible assumption when se-

quences with a given amino acid composition are considered)

and independent, then the central limit theorem applies, and it

follows that the standard deviation of the mean of Eis is pro-

portional to 1/OL. In other words, the distribution (over the set
of sequenceswith a given length and amino acid composition)

of ground state energies per residue is narrower for longer

chains than for shorter chains. Although the average ground

state energy per residue of all sequences with a given amino

acid composition and length is determined by the amino acid

composition (and length), the actual ground state energy per

residue of any particular sequence is (trivially) determined by

the actual sequence itself. The central limit theorem entails

that for longer sequences, large deviations from the average

are less likely than for shorter sequences. Consequently, as

chain length grows, the amino acid composition becomes

more dominant in determining the ground state energy per

residue, and the importance of the actual order of residues, i.e.,

the connectivity of the chain, will diminish.

Although this explanation of the narrowing of the twilight

zone is qualitatively correct, it should be noted that the energy

contributions of individual residues to the total energy are not

independent of each other, and therefore, strictly speaking, the

central limit theorem does not apply. Significant correlations

among residue energy contributions are found. For example,

in 2D latticemodels, the energy contributions of residues i and
i1 3 usually significantly correlate with each other (e.g., for

HP sequences of length 10with five hydrophobic residues, the

correlation coefficient between E2 and E5 is 0.3, with a

p-value, 10�6) because residues i and i1 3 can easily form a

contact. On the other hand, the energy contributions of resi-

dues i and i1 4 usually have a negative correlation coefficient

(�0.2 between E2 and E6 (p¼ 0.001) for sequences specified

in the previous example) because these two residues can never

form a contact for geometric reasons. However, most corre-

lations are small, and as the distance along the sequence be-

tween the two residues increases, the correlation diminishes,

and its sign alternates (data not shown). Therefore, these

correlations matter little as far as the sum of energy contri-

butions is concerned, and the central limit theorem still applies

in an approximate sense, entailing that the distribution of

Eground/L will still get narrower with increasing chain length.

The weakening of interactions in real proteins

Our lattice models successfully reproduced the narrowing of

the twilight zone with increasing chain length that we ob-

served with real proteins. However, we also found that the

twilight zone shifts toward lower hydrophobicities and higher

charges. This is not observed with real proteins. To eliminate

the shift, we had to introduce length-dependent interaction

energies, making the interactions weaker in longer chains.

Although a length-dependent potential may be criticized

for being unphysical, it should rather be viewed as a different

type of potential. Two main types of potentials are used in

computational studies of proteins: semiempirical (physics-

based) and statistical (knowledge-based). Physics-based en-

ergy functions are typically used for simulationswith all-atom

models of proteins. Their terms describe well-defined inter-

actions and have a clear physical meaning. Knowledge-based

potentials are typically used with simplified protein models

and are immensely useful for many types of studies including

fold recognition and protein design (64). Being derived from

data sets of known protein structures, they are mean-force

potentials with less clear-cut physical interpretations. In fact,

they often exhibit properties that may be viewed as un-

physical. In particular, it was found that knowledge-based

potentials derived from small proteins differ from those de-

rived from large proteins, with an overall weakening of resi-

due-residue interactions with increasing protein size (65).

Based on this finding, Dehouck et al. (66) proposed a

knowledge-based potential that depends on protein size,

scaling roughly as 1/L, and demonstrated that it performs

better in fold recognition tests than a size-independent po-
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tential. Our length-dependent potential for 2D lattice models

has a similar scaling and can be viewed as a knowledge-based

potential as well: we used the known scaling of energetic

properties of real proteins to impart similar behavior to our

model proteins. It should be kept in mind that 2D lattice

models are extremely simplified models of proteins. Our re-

sults indicate that, when used with constant interaction en-

ergy, they do not correctly reproduce the scaling of energetics

of real proteins. The length-dependent energies had to be in-

troduced to compensate for this deficiency.

The finding that knowledge-based potentials derived from

proteins of different sizes indicate an overall weakening of

interactions with protein size can be explained by considering

the partitioning of hydrophobic and polar residues between

the protein core and the surface (66). The core region of

(globular) proteins grows with protein size (relative to the

surface), but this is not accompanied by a corresponding in-

crease in the fraction of hydrophobic residues. As a result, the

hydrophobic core gets diluted with an increasing number of

buried polar residues as protein size grows, and this leads to an

overall weakening of interactions. On the other hand, as the

core grows, the number of contacts per residue increases,

ensuring sufficient stability for the protein even in the face of

weakening per-contact interactions. In addition to the in-

creasing polarity of the core, earlier studies also revealed other

factors contributing to theweakening. Bastolla andDemetrius

(56) have shown that the sequence of larger proteins is less

efficiently optimized to maximize interactions, and Liang and

Dill (57) have demonstrated that the overall packing density

of proteins decreases with increasing size. This latter effect

seems to be a general property of random polymers (67) and

results in weaker Van der Waals interactions, also contribut-

ing to the weakening effect.

The original 2D HP lattice model with a constant H-H in-

teraction energy does not exhibit these scaling properties.

Because the model is on-lattice, it cannot reproduce the

lowering of packing density in larger proteins; an off-lattice

model would be needed for this purpose, like the one used by

Zhang et al. (67). This would have to be combined with a

distance-dependent energy function to make the energy de-

pendent on packing. The sampling of sequence space, how-

ever, does pose another problem. We sampled the sequence

space ofHP/HPNmodels in a uniformway for our studies, but

real proteins do not constitute a uniform sample of sequence

space; for example, proteins with a high hydrophobicity are

rare because of the tradeoff between stability against un-

folding and stability against misfolding or aggregation (53).

In fact, most real proteins are only marginally stable, i.e.,

overly stable proteins are rare (68). Although we could also

have progressively biased our sampling of HP/HPN se-

quences against proteins that are ‘‘too stable’’ against un-

folding, the shape of the target distribution would have had to

be somewhat arbitrarily chosen. Also, biasing the sampling

this way would result in many sequences being discarded,

leaving too few sequences for analysis unless we use a model

with a larger alphabet. A larger alphabet, however, makes

sampling computationally more demanding and requires

more parameters to set. In summary, these considerations

suggest that reproducing the scaling of the energetics of real

proteins with a length-independent potential would require an

off-lattice protein model with a distance-dependent energy

function and a larger alphabet with an appropriately biased

sampling of sequence space. Introducing a length-dependent,

and therefore knowledge-based, potential can eliminate these

complications, and the computationally easily tractable HP/

HPN lattice models can be retained.

Earlier studies have shown that the hydrophobic fraction of

real (ordered) proteins is roughly independent of protein size

(53), and it has been argued (55) that there is an optimum, size-

independent, fraction of hydrophobic residues that ensures

stability against both unfolding and misfolding or aggrega-

tion. Our findings suggest that larger proteins could, in theory,

be sufficiently stabilized against unfolding by a lower fraction

of hydrophobic residues than smaller ones (a constant fraction

would actually lead to overstabilization of large proteins), but

in reality, the overall weakening of residue-residue interac-

tions with protein size compensates for this effect, and large

proteins still require the same fraction of hydrophobic resi-

dues for stability as small ones.

CONCLUSIONS

We have shown that there is a twilight zone in amino acid

composition space between ordered and disordered proteins,

and the width of this twilight zone decreases as chain length

grows. Our model studies suggest that the existence of the

twilight zone and the dependence of its width on chain length

are a consequence of the intrinsic structural and energetic

properties of proteins as heteropolymers and their scalingwith

protein size. To put it simply, amino acid composition alone

does not fully determine whether a protein is ordered or dis-

ordered; this essentially depends on the order of residues

and the specific interactions among them. However, with

increasing chain length, the role of specific interactions di-

minishes, and the amino acid composition becomes sufficient

to correctly classify a protein as ordered or disordered. This

finding supports the suggestion that short disordered regions

are more context-dependent than long ones (27).

The dependence of order/disorder on protein size also in-

dicates that size can determine order for proteins that are in the

twilight zone. More generally, the results suggest that system

size is one of the factors that influence the order-disorder state

of a given system, and a change in system size may elicit a

disorder-to-order transition (or the other way around). The

example of two-state homodimers brilliantly illustrates this

point: the chains are disordered as monomers but switch to an

ordered state on dimerization. Indeed, for a short chain, the

twilight zone in amino acid composition space iswide, and the

chain can have a sufficiently high probability to be disordered.

On dimerization, the effective chain length doubles, and the
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twilight zone gets narrower. Although the amino acid com-

position remains the same, the probability of disorder may

drop, and transition to an ordered state may ensue. This line of

reasoning suggests that two-state behavior is easier to attain

with short chains than long ones because short chains have a

wider range of amino acid compositions to choose fromwhile

retaining the ability to switch states on dimerization. Indeed,

two-state dimers tend to have shorter chains than three-state

dimers (dimers whose monomers fold before dimerization)

(see, e.g., Table 1 in Gunasekaran et al. (69)).

This insight has profound implications for disorder pre-

diction. As we have seen on model proteins, the amount of

information carried by the amino acid composition on order/

disorder varies with chain length: for short chains, it only

contains about half of the information needed for an accurate

prediction, but it contains more than 80% of the necessary

information for longer chains (Fig. 10). This finding suggests

that the regions corresponding to ordered and disordered

proteins in amino acid composition space cannot be separated

by anymethod because ordered and disordered proteins in the

twilight zone can have exactly the same composition. It also

implies that disorder prediction methods relying on amino

acid composition alone can never be sufficiently accurate for

short chains or segments. The maximum possible accuracy

that can be reached by such methods has probably already

been reached. The kNN error rates shown in Fig. 1 are in-

dicative of how the error rate of any amino acid composition-

based algorithm should depend on chain/segment length. For

a more accurate disorder prediction on short sequences, the

particular order of amino acids must be taken into consider-

ation. This can be achieved by as simple a method as evalu-

ating dipeptide frequencies. Because specific interactions

become more important in short sequences, predicting actual

contacts between residues may also be a successful approach

(70), although contact prediction, in the absence of a structural

template, is a hard problem in itself (71,72). In the end, our

results suggest that finding ways to glean more information

from the sequence, rather than using ever more sophisticated

classification algorithms, is the key to better prediction.
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