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DNA-binding proteins (DBPs) participate in various crucial processes in the
life-cycle of the cells, and the identification and characterization of these
proteins is of great importance. We present here a random forests classifier
for identifying DBPs among proteins with known 3D structures. First,
clusters of evolutionarily conserved regions (patches) on the surface of
proteins were detected using the PatchFinder algorithm; earlier studies
showed that these regions are typically the functionally important regions
of proteins. Next, we trained a classifier using features like the electrostatic
potential, cluster-based amino acid conservation patterns and the secondary
structure content of the patches, as well as features of the whole protein,
including its dipole moment. Using 10-fold cross-validation on a dataset of
138 DBPs and 110 proteins that do not bind DNA, the classifier achieved a
sensitivity and a specificity of 0.90, which is overall better than the per-
formance of published methods. Furthermore, when we tested five different
methods on 11 new DBPs that did not appear in the original dataset, only
our method annotated all correctly.
The resulting classifier was applied to a collection of 757 proteins of

known structure and unknown function. Of these proteins, 218 were pre-
dicted to bind DNA, and we anticipate that some of them interact with
DNA using new structural motifs. The use of complementary computa-
tional tools supports the notion that at least some of them do bind DNA.
© 2009 Elsevier Ltd. All rights reserved.
Keywords: DNA-binding proteins; random forests; DNA-binding sites;
PatchFinder; structural genomics
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Introduction

DNA-binding proteins (DBPs) are involved in
processes like DNA transcription, maintenance,
replication and the regulation of gene expression,
and hence many of these proteins are essential for
the viability and proliferation of cells.1

As a result of the structural genomics initiatives,
there is a growing number of proteins with
known structure whose functions are unknown.2
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Presumably, some of these proteins are novel
DBPs that are yet to be characterized. Therefore, it
is desirable to develop an accurate method for the
classification of DBPs from their 3D structure.
Some of the methods for the identification of DBPs

have been based on searching for common struc-
tural motifs in DNA-binding sites; for example, the
helix-turn-helix motif.3,4 While such methods are
successful at identifying proteins with these motifs,
they might overlook binding motifs that are yet to be
characterized. The observation that the DNA-bind-
ing site is usually positively charged, compensating
for the negative charges on the DNA backbone, is
also commonly used.3,5–9 Alternative approaches
examine evolutionary conservation patterns and the
amino acid composition of the protein in order to
annotate DBPs.1,8,10
Stawiski et al. examined positively charged

patches on the surface of DBPs in comparison with
proteins that do not bind DNA (nDBPs).7 They
trained a neural network (NN) for the identification
of DBPs using 12 features, including the patch size,
d.
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hydrogen bonding potential, the fraction of evolu-
tionarily conserved positively charged residues and
other properties of the protein. The classifier was
tested on a dataset of structures of 54 DBPs and 250
nDBPs. They used the Matthews correlation
coefficient11 (MCC; see Materials and Methods) to
measure the correlation between the predicted and
observed classes and reported anMCC value of 0.74.
Ahmad and Sarai9 based their NN classifier on the

net charge, and the electric dipole and quadrupole
moments of the protein. They used a dataset of 78
structures of DBPs and a negative dataset of 110
nDBPs. The algorithm achieved an MCC of 0.68 on
this dataset.
Bhardwaj et al.12 examined the sizes of positively

charged patches on the surface of DBPs. They used
the overall charge of the protein as well as its overall
and surface amino acid composition to train a sup-
port vector machine classifier. The classifier had
sensitivity of 67.4% and specificity of 94.9% using
fivefold cross-validation. The analysis was con-
ducted on a non-redundant set (b20% identity
between each pair of sequences) of the DBPs
gathered from earlier studies7,10,13 and the dataset
of nDBPs used by Stawiski et al.7

Szilágyi & Skolnick recently developed a logistic
regression classifier based on the amino acid com-
position, the asymmetry of the spatial distribution of
specific residues and the dipole moment of the
protein.8 They used a dataset of 138 DBPs that were
co-crystallized with DNA and 110 nDBPs, and
reported an MCC of 0.74.
Both the methods of Szilágyi & Skolnick and

Ahmad & Sarai are particularly noteworthy because
of their low sensitivity to the accuracy of the struc-
ture, suggesting that the methods may be useful
with low-resolution structures or possibly even
model structures.
Here, we present a classifier for the detection of

DBPs based on the identification and feature repre-
sentation of functional regions on the surface of
proteins. The identification relies on the observa-
tion that functional regions in proteins are usually
evolutionarily conserved and preserve the func-
tionality of the protein.14,15

PatchFinder is an algorithm that we developed
recently for identifying such conserved functional
regions.16,17 Briefly, PatchFinder uses as input the
3D structure of the query protein,18 and a multiple
sequence alignment (MSA) of the query protein and
its sequence homologues. First, each amino acid
position in the protein is assigned an evolutionary
conservation score calculated on the basis of the
phylogenetic relations among the homologues
using Rate4Site.19 Second, PatchFinder finds the
most significant continuous cluster of conserved
residues on the protein surface. This cluster is pre-
dicted to be the main functional region of the pro-
tein, and we refer to it as the maximum likelihood
patch (ML-patch).
We present here a PatchFinder analysis of the

dataset of DBPs used by Szilágyi & Skolnick. The
analysis showed that the regions predicted by Patch-
Finder are usually DNA-binding sites. Furthermore,
the amino acid conservation patterns of the pre-
dicted functional regions, their electrostatic poten-
tial and other properties were found to be distinctive
between the DBPs and the dataset of nDBPs. We
utilized these properties along with the features
used by Szilágyi & Skolnick in a random forests
classifier20 and achieved an MCC of 0.80, which is
better than previously achieved in other studies.
Except for Stawiski et al.7 and Bhardwaj et al.,12

who examined positively charged patches, most
previous methods use global properties of the pro-
tein as features rather than local properties, which
we find to be informative; the PatchFinder approach
is more general than these methods, since conserva-
tion-defined patches can be used for other func-
tional classes too. This property of the classifier is
particularly important in characterizing proteins of
novel folds coming out of high-throughput struc-
tural genomics.
We used the classifier to predict DBPs in the N-

Func database of structures of proteins with un-
known function.17 Our analysis suggests that 218 of
the 757 entries of N-Func may bind DNA. We also
demonstrated, on the basis of a literature survey and
other computational tools, that some of these pro-
teins are likely to bind DNA. Some of the potential
false-positives may bind other polynucleotides.
Results

PatchFinder consistently finds the core of the
DNA-binding site

In our analysis, we used the dataset of DBPs esta-
blished by Szilágyi & Skolnick.8 This dataset is a non-
redundant set of 138 structures of proteins bound to
a double-stranded DNA (dsDNA). The PatchFinder
algorithm uses the conservation analysis as com-
puted by Rate4Site19 in order to predict the func-
tionally important regions. When fewer than four
sequence homologues are available for a query
protein, the analysis may be inaccurate.19 Conse-
quently, PatchFinder predicted the ML-patches for
121 out of the 138 DBPs.
First, we wanted to find out whether the ML-

patches correspond to the DNA-binding sites. The
ML-patches had an average of 19 residues. In
118/121 (98%) of the ML-patches, at least one of the
residues in the patch was in contact with the DNA
(see Materials and Methods). In 91/121 (74%) of the
cases, at least half of the residues in the ML-patch
were in contact with the DNA. On the other hand,
the ML-patch included at least half of the residues
that are in contact with the DNA in only 21/121
(17%) of the proteins. Figure 1a shows the dis-
tribution of precision and sensitivity amongst the
proteins in the dataset. According to these data,
while most of the residues found by PatchFinder
indeed bind DNA, it overlooked a considerable
part of the interface. Therefore, we concluded that



Fig. 1. The performance of PatchFinder in the identification of DNA-binding regions. (a) The fraction of ML-patches
within each precision/sensitivity bin. Surface residues within 6 Å of the DNA are considered DNA-binders. Black bars
represent the fraction of ML-patches in each precision bin. Precision measures the fraction of the patch residues that
bind DNA (Eq. (3)). Grey bars represent the fraction of ML-patches in each sensitivity bin. Sensitivity measures the
fraction of DNA-binding residues identified by PatchFinder (Eq. (4)). Sensitivity is low in comparison with the high
precision. (b) The fraction of the protein–DNA hydrogen bonds identified by PatchFinder. Grey bars represent the
fraction of patches in each sensitivity bin. In this figure, sensitivity was calculated as the fraction of hydrogen bond
donors/acceptors within the protein-DNA interface21 identified by PatchFinder. PatchFinder identified a considerable
fraction of the hydrogen bonds between the protein and the DNA in most of the DBPs in the dataset. However, in 23%
of the patches, less than 1/10 of the hydrogen bonds were identified.
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only part of the DNA-binding site is highly con-
served in DBPs.
We used the NUCPLOT program21 in order to

examine the sensitivity of PatchFinder regarding
hydrogen bonds between the protein and the DNA.
Here, the results were substantially different (Fig.
1b). PatchFinder identified at least half of the hydro-
gen bonds in 61/121 (50%) of the proteins. Further-
more, the plot revealed two distinct peaks in the
sensitivity. The first represents proteins in which
PatchFinder found up to 10% of the hydrogen
bonds, and the second represents proteins in which
PatchFinder found 60–70% of the hydrogen bonds.
PDB id 1dfm represents the structure of one of the

DBPs in the dataset. This is a crystal structure of the
restriction nuclease BglII from Bacillus subtilis along
with its recognition DNA sequence.22 The protein
binds as a homodimer to the palindromic DNA
sequence AGATCT and cleaves the DNA after the
first adenine, with a magnesium ion as co-factor.23

Figure 2 represents the structure of one unit of the
dimer along with the bound DNA molecule. There
are 56 residues at the protein–DNA interface.
PatchFinder found a patch of 17 residues (red), 16
of which are in contact with the DNA. The ML-
patch comprises 29% of the residues in contact with
the DNA but 43% of the hydrogen bonds with the
DNA. PatchFinder also identified three out of four
residues that comprise the active site.22 In addition,
as Fig. 2 shows, the patch corresponds well to the
residues that bind the recognition sequence of the
DNA (blue).



Fig. 2. Restriction nuclease BglII from Bacillus subtilis.
The crystal structure of restriction nuclease BglII along
with its DNA-recognition sequence.22 The protein is a
homodimer and the picture shows a surface representa-
tion of one of the subunits. The ML-patch is in red and the
rest of the protein is grey. The DNA fragment is shown as
strands, with the DNA-recognition sequence coloured
blue, and the rest of the molecule is shown in yellow. A
calcium ion, located in the active site, is shown in cyan.
The figure shows that the ML-patch corresponds well to
the interface of the protein with its recognition sequence.

Fig. 3. Conformational changes between the bound
and the apo forms of the HhaI DNAmethyltrasferase. The
crystal structure of the apo form of the protein27 (green
ribbons) is superimposed on the crystal structure of the
protein (blue ribbons) bound to a dsDNA (orange
strands).26 The target cytosine, which flips out of the
dsDNA, and the AdoMet ligand are colored red and
yellow, respectively. The figure demonstrates a consider-
able shift of the active site loop towards themajor groove of
the dsDNA.
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While the structures of the DBPs in the data we
used here were determined in complex with a
dsDNA, we are more interested in the identifi-
cation of binding sites of proteins in their unbound
state. Differences between the bound- and the apo-
conformations of DBPs may occur in their tertiary
structure as well as domain organization and even
disorder-to-order transitions.24,25 Obviously, cases
in which the apo form is unstructured and the 3D
structure of the protein is not available are beyond
the scope of this study.
Nadassy et al.25 examined the structures of

proteins that were crystallized both in their bound
and unbound (apo) states. We analyzed 13 pairs of
these protein structures to examine the effect of the
conformational changes associated with DNA bind-
ing on the identification of the functional sites by
PatchFinder. In all cases, the ML-patch of one form
overlapped the ML-patch of the other by at least
50%, and in 11 cases, the overlap was 80% or more.
The HhaI DNA methyltransferase from Haemophilus
haemolyticus is an example of one of the proteins
examined (Fig. 3). The association of the protein with
its recognition DNA sequence invokes base flipping
of a target cytosine (red) out of the DNA helix.26 A
methyl group is then transferred from an AdoMet
molecule (yellow) to the C5 position of that cytosine.
Nadassy et al. measured in the DNA-binding site an
RMSD of 7.9 Å between the bound and apo forms of
the protein.25 Figure 3 shows a superimposition of
the protein in its apo form27 (green) and the protein
(blue) bound to dsDNA26 (orange). As can be seen in
the figure, the association of the protein with the
DNA is accompanied by a substantial movement of
the active site loop towards the major groove of the
dsDNA.28 Cys81 within this loop is a key residue in
the catalytic reaction.29 PatchFinder found an ML-
patch of 15 residues in the bound form of HhaI DNA
methyltransferase. This patch comprises most of the
AdoMet and the nucleotide-binding pockets. The
ML-patch found in the apo form included 12 resi-
dues, all of which are in the ML-patch of the bound
form, including Cys81.This result and the analysis of
12 additional proteins suggest that even though
substantial conformational changes between the
bound and apo forms may occur, the effect on the
identification of the ML-patch is limited.

Identification of DBPs

Since the region identified by PatchFinder is pre-
sumably important for the function of the protein, its
physicochemical properties should facilitate func-
tional annotation at some level.
The positive electrostatic charge is usually the

most prominent property of the binding site, since
the surface of dsDNA is negatively charged due to
the backbone phosphates. Hydrogen bonds were
also pointed out as important in protein–DNA
interactions, especially in recognition.30-33 The frac-
tion of residues in helical conformation is another
noticeable feature found in DNA-binding sites,7

particularly due to the common helix-related DNA-
binding motifs (helix-turn-helix, helix-hairpin-helix
and helix-loop-helix).3 Consequently, we measured



Fig. 4. ROC and PR curves of the classifier. (a) The
ROC curve of the classifier. The results were obtained
using a dataset of 138 DBPs and 110 nDBPs (grey line) and
on the extended dataset of 138 DBPs and 843 nDBPs (black
line), which reflect the anticipated proportion of DBPs in
reality. The areas under the curves (AUC) are 0.96 and
0.90, respectively. (b) The precision-recall (PR) curve of the
classifier, on the extended dataset (black line) in compari-
son with a random classification (broken grey line) gene-
rated by shuffling the classes.

1044 Identification of DNA-binding Proteins
these properties for the ML-patches of the DBPs
and the nDBPs in the datasets. We found that DBPs
differ significantly from the rest of the proteins in
the features examined (Kolmogorov-Smirnov test;
pb0.001), even though by itself, none of the features
is sufficient for reliable distinction between these
two groups.
Another feature that could be helpful in protein

annotation is the amino acid composition of the
protein and, in particular, that of the DNA-binding
region.25 We used a position-specific scoring matrix
(PSSM) representation of the MSAs in order to
characterize the amino acid conservation patterns of
the ML-patches. Then we defined features that
represent the similarity of the mean conservation
pattern of the ML-patch to a set of prototype con-
servation patterns obtained via clustering (see
Materials and Methods for details). The features
listed above were added to the 10 features deve-
loped by Szilágyi & Skolnick.8 The features are: the
dipole moment of the molecule, the spatial asym-
metry of Arg, Gly, Asn and Ser, and the percentage
of Arg, Ala, Gly, Lys and Asp in the query protein.
Our classifier was based on two separately

trained classifiers, depending on the availability of
the ML-patch. The first included 16 features that
did not require the identification of the ML-patch.
This classifier is suitable for cases in which too few
sequence homologues were found for the query
protein for detecting the ML-patch. There were 28
such cases in our dataset. The second classifier
included all 33 features that were calculated for the
proteins, including those that require the ML-patch.
We trained random forests classifiers20 with the
resulting vectors that represented the proteins in
the dataset. The performance of the classifier was
evaluated using 10-fold cross validation runs. The
resulting classifier had a sensitivity and a specificity
of 0.90, and an MCC of 0.80.
Figure 4a represents a receiver operating cha-

racteristic (ROC) curve of the classifier that plots the
sensitivity versus the false-positive detection rate
(i.e., 1 – specificity) at various prediction thresholds
(grey line). The area under the curve (AUC) is a
measure of the quality of the separation between the
examined protein classes (i.e., DBPs versus nDBPs).
An AUC of 0.5 represents a classification that
corresponds to a randomly generated prediction,
while an area of 1 corresponds to a perfect classifier.
The classifier had a high AUC of 0.96. This value is
higher than the AUC of 0.93 achieved by Szilágyi
And Skolnick on the same dataset.8

We also examined the classifier on the datasets
used by Bhardwaj et al.12 and Stawiski et al.7 Our
classifier was significantly better on these datasets
than the methods of the respective authors (see
Supplementary Data S1).

The expected performance on “real” user data

The fraction of DBPs in a proteome is much
smaller than it is in the training data. We expect that
the user data would be similar to the distribution of
proteins within proteomes. We used the gene onto-
logy34 (GO) database and the annotations available
for the genomes of Homo sapiens, Saccharomyces
cerevisiae and Escherichia coli, in order to evaluate
the fraction of DBPs in a set of randomly selected
proteins. Consequently, we estimated the fraction of
DBPs to be 14% (see Materials and Methods).
On the basis of this estimate, we examined the

classifier on an extended non-redundant dataset
with 733 additional nDBPs. Along with the original
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dataset of 138 DBPs and 110 nDBPs,8 we had a
non-redundant set of 981 proteins in which 14% are
DBPs. On this dataset, the specificity of the clas-
sifier dropped from 0.90 to 0.72, while the sen-
sitivity stayed at 0.90. However, by applying
different score cutoffs, one can select a suitable
cutoff for specific needs. For example, at a sensi-
tivity of 0.85 the specificity is 0.82. The AUC, which
integrates the various true-positive (sensitivity) and
false-positive detection rate (1–specificity) values at
different cutoffs, was 0.90 (Fig. 4a, black curve).
A precision-recall (PR) curve is a plot of the

precision versus the recall (sensitivity) of the clas-
sifier at various prediction score cutoffs. When the
data are highly skewed, as in our case, a PR curve
is considered better than ROC curve for the
analysis of a classifier's performance.35 The PR
curve of the classifier (Fig. 4b, continuous line) is
significantly better than that obtained at random
(Fig. 4b, broken line). Supplementary Data Table S1
gives the specificity and recall values along with
the corresponding classification score thresholds.

Ranking the features by their contribution

We examined the contribution of the various fea-
tures to the overall performance of the classifier on
the 220 proteins for which an ML-patch was pre-
dicted. The features were divided into seven cate-
gories as follows: electrostatic potential, hydrogen
bond donors/acceptors, secondary structure, the
amino acid conservation patterns of the ML-patch,
amino acid asymmetry, amino acid content in the
proteins and the dipole moment. The last three
categories are of the features developed by Szilágyi
& Skolnick.8 We trained seven different classifiers.
In each classifier, one group of features was
omitted. The unique contribution of each category
was measured as the change in misclassification
rate of the dataset using 10-fold cross-validation
(i.e., the change in the total number of misclassified
proteins divided by the size of the dataset).
According to this analysis (Fig. 5), the features of
the electrostatic potential, the amino acid conserva-
tion patterns of the ML-patch and the secondary
structure had the largest contribution to the
classification.

Analysis of false predictions

Using 10-fold cross-validation, the classifier mis-
classified 25 proteins: 14 false-negatives and 11 false-
positives. For most of these proteins, more than 40%
of the decision trees classified the protein correctly. It
is worthwhile to note that in almost all of the false-
positive predictions, the average electrostatic poten-
tial of theML-patch was positive, a marked property
of most of the DBPs. These proteins bind molecules
with a mostly negatively charged surface like heme
and NADPH.
RNA, in particular, has physicochemical proper-

ties similar to those of DNA as a polynucleotide.
Consequently, the interactions of proteins with
DNA and RNA are similar as well.36 Shazman &
Mandel-Gutfreund have recently developed a
classifier for the identification of RNA-binding
proteins.37 They showed that although the classi-
fier identified RNA-binding proteins (RBPs) well, it
could not distinguish between RBPs and DBPs. We
examined our classifier on the non-redundant set
of 76 RBPs used by Shazman & Mandel-Gut-
freund. The classifier misclassified 51 (67%) of the
proteins, predicting them as DBPs. Even though
this rate is better than expected at random (i.e.
false-positive rate of 90%), we concluded that our
classifier does not distinguish well between RBPs
and DBPs, at least when trained on its current
training set.
Fig. 5. Determinants of the clas-
sifier. The graph represents the
change in misclassification rate
upon excluding each feature cate-
gory from the input vectors. A high
rate represents a big contribution of
the category to the overall perfor-
mance of the final classifier. Accor-
ding to this analysis, the highest
contribution comes from the electro-
static potential, the amino acid con-
servation patterns of the ML-patch
and the secondary structure.



Fig. 6. Structural similarity between 2fna and cdc6
from Sulfolobus solfataricus. The structure of the protein
of unknown function Q97Y08_SULSO (PDB id 2fna;
blue ribbons) was superimposed on the structure of
cdc6 (magenta and green) bound to dsDNA (orange
strands) and to an ADP molecule (yellow in spacefill
representation).49 The similarity supports our prediction
that 2fna also binds DNA.

1046 Identification of DNA-binding Proteins
A small but independent dataset

Since Szilágyi & Skolnick gathered the dataset of
DBPs we used here, new structures of DBPs have
been deposited in the PDB. Applying the same
filtering criteria as used for the assembly of the ori-
ginal set, we found 11 additional crystal structures of
DBPs bound to dsDNA. These proteins share 35% or
less sequence identity with the entries in the dataset
used by Szilágyi & Skolnick. Our classifier correctly
predicted all of these proteins as DBPs. The lowest
score assigned to a protein in this set was 0.65. At
this score cutoff, the specificity on the extended
dataset is 0.87. We tested three published structure-
based methods6,8,9 and a sequence-based method10

on this set, and found that between two and eight
of the DBPs were misclassified by them (see
Supplementary Data Table S4). While this additional
test set is too small to provide a reliable comparison,
it suggests that our method is more sensitive and
identifies DBPs better than related methods.

Identification of DBPs in the N-Func database

Structural genomics efforts like the Protein Struc-
ture Initiative (PSI) have determined the structures
of hundreds of proteins as part of an effort tomap the
protein fold space. Many of these proteins are of
unknown function, and are referred to as hypothe-
tical proteins.38 Some of these are presumably DBPs.
We recently established the N-Func database: a

collection of 757 hypothetical proteins of known
3D-structure.17 N-Func includes the PatchFinder
prediction of the functional region for each protein,
based on MSAs taken from the HSSP database.39

Applying the classifier on N-Func, 218 proteins
were predicted as DBPs at a score cutoff of 0.5. The
list is available as Supplementary Data Table S2
along with the fraction of trees in the forest that
classified each protein as DBP, which corresponds to
the confidence of the classification (see Materials
and Methods). Additionally, we supply links to a
detailed analysis of the ML-patch of each protein,
including 3D visualization of the patch (using
FirstGlance in Jmol).
The score cutoff of 0.5 is very permissive, having

an expected precision of only 35% at a sensitivity of
90% (see Fig. 4b). Nevertheless, by applying diffe-
rent classification score cutoffs on the list (see
Supplementary Data Table S1), sensitivity can be
lowered in order to improve precision or vice versa.
We further analyzed the proteins in N-Func that

are predicted as DBPs with score N0.78. With this
score threshold, the expected specificity is 0.95 and
the sensitivity is 0.58. Even though the specificity is
high at this cutoff, about one-third of the predicted
DBPs are expected to be false-positives. We exam-
ined these proteins with two algorithms for the
identification of DBPs implemented in the ProFunc
server.40 The first algorithm searches for the DNA-
binding helix-turn-helix motif in the query protein.4

The second algorithm searches for local structural
similarity between the query protein and 3D tem-
plates of known DNA/RNA-binding proteins.41 In
addition, we examined whether the proteins have
folds42 or sequence motifs43 that are related to
DBPs. The data are summarized in Supplementary
Data Table S3. For most of the proteins, we found
additional support for a DNA-binding functionality.
Some of the proteins, on the other hand, are pre-
dicted to bind RNA or other ligands. This may
indicate the similarity between DNA and RNA-
binding proteins,36 and the difficulty to distinguish
between them as was shown earlier44 and in the
section Analysis of false predictions, above. Further-
more, there are known examples of proteins that
show affinity to both RNA and DNA (e.g., the
archeal chromatin protein Alba45).
Below, we present two detailed examples of pre-

dicted DBPs.

2fna: Q97Y08_SULSO from Sulfolobus
solfataricus

PDB entry 2fna refers to a protein of 356 residues
from Sulfolobus solfataricus. The 3D structure of the
proteinwas determined as part of the Joint Center for
Structural Genomics (JCSG) initiative. The protein
bound to an ADPmolecule was crystallized andwas
assigned the Pfam motif Archaeal ATPase.46 Our
classifier predicted that the protein binds DNA. We
analyzed the protein with ProFunc, a web server for
function prediction of proteins with known 3D
structure.40 The server includes various general
tools, e.g. for the identification of sequence47 or
structural48 similarity, as well as tools that specialize
in specific functional classes like DBPs.3,4,41 Pro-
Func's tools that specialize in DBPs overlooked the



Fig. 7. Hypothetical protein Q81BA8_BACCR from
Bacillus cereus, a potential DBP. (a) The electrostatic
potential of the homodimeric structure of the protein
mapped onto the molecular surface, according to the
colour scale on the left. The figure reveals a large posi-
tively charged surface patch. The figure was produced
with the Python Molecular Viewing environment
(PMV).79 (b) The crystal structure of one unit of the
homodimer of Q81BA8_BACCR (green ribbons) super-
imposed on the structure of Q82ZI8_ENTFA (blue
ribbons). Q82ZI8_ENTFA belongs to the Pfam entry of
predicted DNA alkylation repair enzymes and, like
Q81BA8_BACCR, is predicted by the classifier to bind
DNA.
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possibility that 2fna binds DNA. However, other
tools in ProFunc identified both structural and
sequence similarity between 2fna and archaeal
cdc6,49,50 a protein involved in pre-replication com-
plexes.50 cdc6 is a DBP that also binds ATP/ADP.49

Figure 6 presents a superimposition, made with
UCSF Chimera,51 of the structures of 2fna (blue) and
the cdc6 from S. solfataricus (magenta and green)
bound to a dsDNA (orange).49 Evidently, there is
close structural similarity between 2fna and most of
the cdc6 from S. solfataricus (magenta). Furthermore,
the superimpositions of the protein chains placed
together the ADP molecules crystallized with each
protein. The C-terminal domain of cdc6 (green) is
shifted considerably in comparison with the corre-
sponding region in 2fna. However, both domains
have a similar winged helix fold. Therefore, we
suggest that 2fna, which shares the same structure,
also binds DNA.

1t06: Q81BA8_BACCR from Bacillus cereus

Another protein that our classifier predicted to
bind DNA is Q81BA8_BACCR from Bacillus cereus.
The structure of the protein was determined as part
of the initiative of the Midwest Center for Structural
Genomics (MCSG) by Zhang and colleagues (PDB id
1t06). The protein appears in the PDB file as a
homodimer and has a large positively charged sur-
face cavity (Fig. 7a). We analyzed the protein using
the Skan algorithm for the identification of structural
similarity.52 Skan identified significant structural
similarity between 1t06 and the structure of
Q82ZI8_ENTFA from Enterococcus faecalis (PDB id
2b6c; Fig. 7b). In addition, the proteins are classified
within the same SCOP family.53 However, they
share a low level of sequence identity of only 17%.
Q82ZI8_ENTFA is a hypothetical protein that was

crystallized by the same center. It has a positively
charged surface cavity and, like 1t06, was predicted
by our classifier to bind DNA. Q82ZI8_ENTFA
belongs to a newly characterized Pfam entry
PF08713.46 PF08713 includes 3-methyladenine DNA
glycosylases,54,55 and is annotated as a family of
DNA alkylation repair enzymes. As the protein
appears in the PDB file, the interface between its
monomers is at a different location within the fold in
comparison with 1t06 (data not shown). However,
the PQS56 server for the analysis of protein quater-
nary structures predicts that this interface is due to
crystal packing rather than being physiological.
The two proteins share a low level of sequence

similarity but a similar fold, and both are predicted
to be DBPs. This suggests that although the proteins
are evolutionarily distant, they retained properties
related to DNA binding, which were identified by
the classifier.
Discussion

We introduce here a new approach for the
detection of DBPs. The improvement over previous
methods is based predominantly on various proper-
ties of the functional regions of the proteins. In the
following, we discuss some of the implications and
limitations of the approach.

PatchFinder identifies the core of the
DNA-binding site

PatchFinder traces the main conservation signal
on the protein surface, which is often the functional
region of the protein.15,16 Our hypothesis was that
this region often mediates the interaction with the
DNA in DBPs. In support of this hypothesis, we
showed that at least some of the residues in the
ML-patch are in contact with the DNA in 118 out of
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121 of the DBPs in the dataset. In most cases, at
least half of the residues in the ML-patch were in
contact with the DNA (i.e., high precision), while a
considerable part of the DNA-binding region was
overlooked (low sensitivity).
It has been reported that DNA-binding sites are

often evolutionarily conserved.1 However, it was
concluded also that the observed conservation signal
in these regions was not strong enough to enable
the identification of binding sites.1 We demonstrate
here that this claim is only partially true: In most
cases, evolutionary conservation enables the identi-
fication of a core of the interface while the rest of
the interface residues are less conserved.
Many of the DBPs have some specificity to the

target DNA sequence.1 According to common
models, the interaction with DNA begins with non-
specific association of the protein with DNA and
proceeds with recognition of the target site on the
DNA.57-59 According to these models, the protein
slides along the DNA and hops between close DNA
segments, “searching” for its target sequence before
the recognition.57,59 An implicit assumption in these
models is that protein–DNA interactions include two
components: specific and non-specific. We suggest
that, generally speaking, the (evolutionarily con-
served) ML-patches, detected by PatchFinder, med-
iate the specific interactions with the DNA. This
hypothesis may explain the low level of sensitivity
along with the high precision of the patches. The
specific functionality of the protein (e.g., recognition
of the DNA sequence or catalytic activity) typically
requires a highly conserved region. However, in
order to preserve the initial non-specific interactions
with DNA, the geometric and chemical constraints
on the protein region involved in these non-specific
interactions are presumablymore permissive. There-
fore, this region may be less conserved. The initial
association of the protein with the DNA is presum-
ably driven mostly by non-specific Coulomb attrac-
tion between positively charged residues on the
protein surface and the negatively charged DNA
molecule.60 Indeed, examination of the DNA-bind-
ing regions of the DBPs in the dataset showed that
the fraction of the positively charged residues
arginine and lysine in these regions is higher than
in the ML-patches in most (62%) of these proteins.
It is known that hydrogen bonds contribute to the

recognition of the target DNA sequence.30-32 We
analyzed the pattern of protein–DNA hydrogen
bonds with NUCPLOT.21 The analysis showed an
enrichment of hydrogen bonds in most of the ML-
patches in comparison with the rest of the DNA-
binding site.
Another interesting result from the same analysis

suggested a partitioning of the ML-patches into two
groups, according to the fraction of protein–DNA
hydrogen bonds identified by each patch (Fig. 1b). A
preliminary inspection of 16 protein–DNA com-
plexes with the highest fraction of hydrogen bonds
in their ML-patches showed that the vast majority of
these proteins are transcription factors, which typi-
cally require specific recognition of the DNA. By
contrast, inspection of the 16 proteins whose ML-
patcheswere devoid of hydrogen bonds showed that
this group is enriched with proteins with catalytic
activity, including an endonuclease,61 amethyltrans-
ferase61 and a DNA polymerase.62 In these proteins,
the main conservation signal came from the catalytic
site rather than the recognition site.
It is important to note that PatchFinder is intended

for the identification of various functional regions in
proteins.16,17 Thus, methods that specialize in the
identification of DNA-binding regions are presum-
ably superior to PatchFinder in their coverage of the
region.6,7,63

Identification of DBPs

We examined various features of the ML-patches
of the proteins in our dataset in order to discriminate
between DBPs and nDBPs. The classifiers developed
by Stawiski et al.7 and Bhardwaj et al.12 examined
similar features of positively charged regions in the
proteins. One fundamental difference between these
methods and ours lies in the different regions
examined. We examined the regions that are most
likely to be functional in each protein. We assumed
that the differences between functional regions in
the DBPs and nDBPs are more pronounced than the
differences between positively charged regions of
the two classes. This hypothesis is supported by the
marked contribution of the amino acid conservation
patterns of the ML-patch to the overall performance
(Fig. 5).

The expected significance of real data

The classifier presented here outperformed related
methods, both on the Szilágyi & Skolnick dataset
that was used for training/testing and on the
independent set of 11 DBPs, collected later. We
reached a sensitivity and a specificity of 0.90 on the
Szilágyi & Skolnick dataset. When the fraction of
DBPs is closer to its fraction in proteomes (i.e., 14%)
the specificity changes significantly (see Fig. 4).
These results suggest that there is still room for
improvement. This could possibly be achieved by,
e.g., developing new features or using specialized
classifiers for specific classes of DBPs.

Measure of confidence for the performance
analysis

While it is common in the bioinformatics commu-
nity to perform a bootstrap-style analysis in order to
compute the variance of the cross-validation error
estimate, recent theoretical and empirical work con-
cludes that this procedure is not statistically justi-
fied. For example, a recent empirical study64 used
simulations to show that both cross-validation and
bootstrapping can produce unreliable estimates of
the true error rate when the sample size (dataset) is
small and found no practical procedure to estimate
the uncertainty of these error estimates. For this
reason, we do not compute a bootstrap estimate of



1049Identification of DNA-binding Proteins
the variance of our classifier's cross-validation error
rate. Moreover, we caution that the dataset used for
training and testing is clearly not a representative
sample of the underlying distribution of proteins,
which may also cause the empirical error estimate to
deviate from the true error rate. Having said that, it
is encouraging to note that the classifier detected all
the 11 DBPs of the new set correctly (see A small but
independent dataset section in Results).

Predictions on N-Func

We provide a list of 218 predicted DBPs from the
N-Func database of proteins of unknown function.
Preliminary analysis of some of these proteins
showed that at least some of them are likely to
bind DNA. Some of the proteins predicted as DBPs
may present new DNA-binding motifs. Therefore,
we encourage further investigation of the potential
DBPs in N-Func, in particular those with the highest
prediction score.

Materials and Methods

Datasets

Our analysis was based on the datasets of DBPs and
nDBPs used by Szilágyi & Skolnick.8 The first is a non-
redundant set (up to 35% sequence identity between each
sequence pair) of 138 DBPs that were co-crystallized with
dsDNA at a resolution of 3 Å or better. The negative
dataset of nDBPs is a representative set of 110 proteins
that meet the same redundancy criteria.9,65 The perfor-
mance of the classifier on the datasets was measured
using 10-fold cross-validation.
The extended dataset (with the lower—presumably

more realistic—fraction of DBPs) included additional 733
structures of nDBPs, so that it will form a non-redundant
set of proteins with the original dataset of 248 structures.
The additional structures were gathered using the PISCES
server, which produces lists of PDB entries according to a
variety of filters.66 We used a pre-compiled list of PDB
entries. Entries in this list include crystal structures with a
resolution better than 3.0 Å. The sequence identity between
each pair of sequences is less than 25%. From this list, we
removed sequences that share more than 35% sequence
identity with one of the sequences in the original training
set. Finally, we removed PDB entries that had no GO
annotation34 or had a GO annotation containing any of the
following strings: 'DNA', 'MOLECULAR_FUNCTION
UNKNOWN' or 'PROCESS UNKNOWN'. From that list,
we selected 733 entries at random to extend the list of
nDBPs.

Prediction of functional regions using
PatchFinder

We predicted the functionally important region of each
protein with an algorithm that we developed, called
PatchFinder.16,17 The algorithm searched for statistically
significant clusters of spatially close and evolutionarily
conserved residues on the protein surface. We showed
earlier that these clusters often delineate the regions in the
proteins that mediate interactions with other molecules.16

The algorithm receives as input an MSA of the query
protein and its sequence homologues, as well as the 3D
coordinates of the protein in PDB format.18

Homologous sequences for each protein in the set were
gathered from the UniProt database67 by three PSI-
BLAST47 iterations. Next, the sequences (up to 300) were
aligned by CLUSTALW.68

Conservation analysis is often inaccurate for proteins
with fewer than four sequence homologues.19 Therefore,
28 proteins were removed from the dataset, leaving 121
DBPs and 99 nDBPs with ML-patches; however, we
trained a second classifier using the 16 global features
that did not require the identification of the ML-patch.

Defining the DNA-binding site

We needed to define the DNA-binding site in order to
examine the performance of our method. To this end, we
considered solvent-accessible residues within 6 Å from the
DNA as residues that are in contact with DNA.63 In this
context, it is noteworthy that the crystal structures in the
dataset included only fragments of DNA. Furthermore,
the protein–DNA complex, as it appears in the crystal,
may represent only one out of several binding conforma-
tions. Hence, we could not exclude the possibility that a
few other residues may be in contact with DNA.

Descriptors

Average electrostatic potential

The average electrostatic potential was computed for
the surface atoms of the proteins as well as for the surface
atoms of the ML-patch using the following procedure.

1. Assignment of the radii, charges and hydrogen
atoms to each atom in the protein using PDB2PQR69

and the CHARMM force field.70

2. Calculation of the electrostatic potential at the points
of the grid that encloses the protein using the
Adaptive Poisson-Boltzmann Solver (APBS).71

3. Interpolation of the electrostatic potential values on
the surface points of the protein that were generated
by SURF.72

4. Averaging the electrostatic potential of the points of
the entire protein surface and those of the ML-patch.

Hydrogen bond donors/acceptors

For each protein, we calculated the number of unsa-
tisfied hydrogen bond donors per exposed atom on the
protein surface. For this task, we used HBPLUS73 to
identify hydrogen bond donors already satisfied by
hydrogen bond acceptors within the protein. These donors
were subtracted from the total number of hydrogen bond
donors in the protein. A similar procedure was performed
for hydrogen bond acceptors.
The average number of hydrogen bond donors/

acceptors per exposed atomwithin the ML-patch provides
some separation between DBPs and nDBPs. However,
these features did not improve the performance of the
classifier, and we therefore used these features only as
calculated for the whole protein surface.

Secondary structure content

The DSSP program assigns the secondary structure to
each residue in a protein with a known 3D structure.74

We used DSSP to compute the fraction of residues in the
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ML-patch that are in α-helical conformation, the fraction
of residues that are in a β-strand and these values for
the whole protein surface.

Characterization of the ML-patch based on
pre-calculated amino acid conservation patterns

This multi-dimensional descriptor is aimed at repre-
senting the amino acid composition of the ML-patch of
the query protein and the corresponding positions in its
sequence homologues. The pre-calculation was con-
ducted on a non-redundant set of 609 proteins from
N-Func. This dataset and the dataset on which we test
the classifier are disjoint sets.

1. Removal of redundancy from each MSA with CD-
HIT.75 After filtration, each MSA contained sequen-
ces that shared, at most, 90% sequence identity.

2. Calculation of a PSSM for each MSA.76

3. Extraction of the PSSM positions that correspond
to the ML-patches of the proteins in the dataset.

4. K-means clustering of the vector representations of
PSSM positions in ML-patches gathered from all
the DBPs and the nDBPs. The distance d between
each pair of vectors x and y was measured with a
simple Euclidean distance function.

We applied this procedure with K values between 2 and
20 and found that clustering the data into more than 12
clusters did not improve the performance in terms of
AUC. Thus, 12 clusters were constructed and their
centroids were calculated.
Based on the 12 pre-calculated cluster centroids, we

constructed for each protein a 12-dimensional vector
whose components corresponded to the average distances
of the vectors at PSSM positions corresponding to ML-
patch residues to the 12 cluster centroids. Equation (1)
represents the calculation of the ith element in the vector of
a protein in the dataset. Ci corresponds to the ith K-means
centroid andxj correspond to the PSSMvector of position j.

vi xð Þ = 1
jMLpatchj

X

jaMLpatch

d Ci; xj
� � ð1Þ

x = (xk | k is the position in the PSSM corresponding to a
residue in the ML-patch).

Additional features

In addition to the features above, we used the number
of residues in the proteins, the number of residues in the
ML-patch, and the number of solvent-accessible atoms in
the protein.

Classification with random forests

The random forests classifier builds an ensemble of
decision trees.20 Each tree is built on the basis of a subset of
the training set. The split at each tree-node is based on a
feature selected out of a random subset of the input
descriptors. Once the forest of trees has been built, new
instances are classified according to the decision of the
majority of trees.
We used random forests with 50,000 decision trees. Five

descriptors were selected randomly at each node split. The
performance of the classifier was evaluated using 10-fold
cross-validation.
It is noteworthy that we also examined the data with a
support vector machine and achieved similar performance.
Integration of the data from Szilágyi & Skolnick

Szilágyi & Skolnick used a logistic-regression classifier
and achieved an MCC of 0.74.8 In order to reproduce this
performance with random forests, we transformed the
data using principal components analysis (PCA). The
transformation was calculated with the Weka software
package.77 The original 10-dimensional vectors were
transformed to nine dimensions conserving 95% of the
variance in the original space. Thus, the principal
components representation seems to improve over the
original feature representation, even though there is little
dimensionality reduction. The transformed descriptors
were then integrated in the final classifier.
The transformation parameters were deduced from the

set of 609 proteins in N-Func described above.

Evaluation of the fraction of DBPs in genomes

It has been estimated that the fraction of genes
encoding for DBPs is 2–3% of prokaryotic genomes
and 6–7% of eukaryotic genomes.78 However, due to the
availability of new functional data and annotation
databases since the calculation of these figures, we
decided to re-compute these estimates. We used the GO
database in order to evaluate the fraction of DBPs in the
genomes of H. sapiens, S. cerevisiae and E. coli.34 For each
of these genomes, we looked at the proteins that are
assigned with GO numbers and measured the fraction
among them with DNA-related GO numbers (i.e., GO
numbers that include the word 'DNA' in their title). The
fraction of proteins related to DNA was 14%, on
average.

Measures for performance evaluation

We examined the performance of the various classifiers
using the following measures, where TP, TN, FP and FN
denote true positives, true negatives, false positives and
false negatives, respectively:

MCC=
TP � TNð Þ � FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN + FPð Þ � TN + FNð Þ � TP + FPð Þ � TP + FNð Þp ð2Þ

Precision =
TP

TP + FP
ð3Þ

Sensitivity Recallð Þ = TP
TP + FN

ð4Þ

Specificity =
TN

TN + FP
ð5Þ
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