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Efficient Prediction of Nucleic Acid Binding Function
from Low-resolution Protein Structures
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Structural genomics projects as well as ab initio protein structure prediction
methods provide structures of proteins with no sequence or fold similarity
to proteins with known functions. These are often low-resolution structures
that may only include the positions of Ca atoms. We present a fast and
efficient method to predict DNA-binding proteins from just the amino acid
sequences and low-resolution, Ca-only protein models. The method uses
the relative proportions of certain amino acids in the protein sequence, the
asymmetry of the spatial distribution of certain other amino acids as well as
the dipole moment of the molecule. These quantities are used in a linear
formula, with coefficients derived from logistic regression performed on a
training set, and DNA-binding is predicted based on whether the result is
above a certain threshold. We show that the method is insensitive to errors
in the atomic coordinates and provides correct predictions even on
inaccurate protein models. We demonstrate that the method is capable of
predicting proteins with novel binding site motifs and structures solved in
an unbound state. The accuracy of our method is close to another,
published method that uses all-atom structures, time-consuming calcu-
lations and information on conserved residues.
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Introduction

Structural genomics projects aim to solve the
experimental structures of all existing protein folds.
The rationale behind these projects is that knowing a
protein’s structure will help with identifying its
function. Because the targets of structural genomics
projects are proteins for which there is currently little
information, it is expected that the structures
determined in the framework of these projects will
includemany proteins with novel functions. Because
of the multifunctional nature of proteins and the
existence of multifunctional folds, the analysis of
sequences, motifs, and the identification of the fold
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are insufficient to reliablypredict the function of these
novel proteins; identifying the function of these
proteins will be a great challenge. Reliable function
prediction will involve prediction and/or analysis of
active sites, binding sites or other structural proper-
ties indicative of protein function.1,2

In recent years, with the increasing computing
power available to researchers and the develop-
ment of new, efficient techniques, large-scale
protein structure prediction has become feasible.
Comparative modeling methods, threading-based
approaches and ab initio structure prediction
techniques have been applied to the entire protein
sequence database3 and complete genomes.4 The
structures provided by these projects, as well as
those from some experimental techniques, are often
low-resolution structures where atomic coordinates
are not accurate, and some atoms may be missing.
In many cases, all we have is a rough Ca-backbone
that shows the global fold of the protein and the
approximate location of each residue without the
detailed conformation of each side-chain. It is
desirable that we have efficient methods for the
prediction of protein function from such limited
information and approximate structures.
d.
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DNA-binding proteins have a vital role in the
maintenance and the biological processing of
genetic information, including the (regulated)
transcription, replication, repair, packaging and
rearrangements of DNA. It has been estimated
that 2–3% of proteins encoded by prokaryotic
genomes and 6–7% of those encoded by eukaryotic
genomes are DNA-binding proteins.5 The struc-
tures and binding modes of DNA-binding proteins
are diverse: Luscombe et al.5 classified the known
DNA-binding structures into eight major classes
and a total of 54 subgroups.

There have been several investigations into the
patterns of protein–DNA interactions.6–10 In an
early study, Seeman et al.11 proposed some rules
that describe how certain amino acids can discrimi-
nate between different bases. Several studies
focused on the hydrogen bonding patterns between
amino acids and bases.6–8,10,12,13 Although some
typical patterns have been revealed, e.g. the
interaction between Asn and A and between Lys
and G, the rules of binding and recognition vary
substantially among different protein families. In
addition, it has been demonstrated that residues
and bases not directly in contact with each other
also can play important roles in protein–
DNA recognition via various mechanisms, e.g. by
water-mediated contacts14 or sequence-dependent,
binding-induced conformational changes and
distortions.15,16

Because of the great diversity of protein–DNA
binding patterns and modes, identifying DNA-
binding proteins based on structural features is a
challenging task, especially if the goal is to devise a
method that is not limited to a particular family of
DNA-binding proteins, e.g. the helix-turn-helix
group. There are two published studies that aim
to solve this problem.17,18 Stawiski et al.18 utilized 12
parameters extracted from the detailed atomic
structure of the protein. The computation of some
of these parameters requires the analysis of
“electrostatic patches” (finding positively charged
surface patches from a Poisson–Boltzmann con-
tinuum electrostatic potential) and an analysis of
surface clefts. These parameters require a detailed,
accurate all-atom structural model. Three of the 12
parameters rely on a conservation analysis of the
sequence, which involves a PSI-BLAST search for
related sequences. The 12 parameters are then fed
into a three-layer artificial neural network with one
hidden layer containing three units, and the
prediction is obtained from the output. With a
threshold value of 0.5 to decide between negative
and positive predictions, 44 out of 54 DNA-binding
proteins and 236 out of 250 non-DNA-binding
proteins were correctly classified in a leave-one-
out cross-validation, which is equivalent to a F
correlation coefficient (categorical correlation coeffi-
cient between prediction and truth; also known as
the Matthews correlation coefficient) of 0.738.
Ahmad & Sarai17 presented a different approach
to the problem based on simple principles: they
created a linear predictor (a two-layer neural
network with no hidden layer) that only uses bulk
electrostatic properties (the total charge, dipole
moment and quadrupole moment of the molecule)
to predict DNA binding. As tested by a cross-
validation scheme, their method predicted w63 of
78 DNA-binding andw96 of 110 non-DNA-binding
proteins, equivalent to a F correlation coefficient of
0.68. This method is fast and efficient and could
work with Ca-coordinates only. We believe, how-
ever, that there is a flaw in the way Ahmad & Sarai
constructed their data sets (see details later), and
therefore, the performance of the method is over-
estimated. It should be noted that Ahmad et al.19

also devised a method to predict DNA-binding
proteins from the amino acid composition alone.
The accuracy of this method was found to be
moderate (68.6% sensitivity at a 63.4% specificity on
a large set of sequences); however, because of the
way the data set was constructed, these results are
not comparable with those obtained from structure-
based methods.
Shanahan et al.20 also developed a method to

identify DNA-binding proteins from structural
information. However, this method relies on
detecting particular structural motifs (helix-turn-
helix, helix-hairpin-helix and helix-loop-helix), and
although a large percentage of known DNA-
binding proteins contain this motif, the reliance on
the presence of a particular motif clearly limits the
applicability of the method when DNA-binding
proteins with other or possibly yet unknown motifs
are to be detected.
The purpose of this work is to develop a method

to identify DNA-binding proteins from low-resol-
ution structures (experimental or predicted) using
only bulk, coarse-grained properties that are not
specific to a particular binding motif or fold and
which are fast to calculate. Our goal is to construct a
method that is as efficient and fast as Ahmad &
Sarai’s17 but is as accurate as Stawiski et al.’s18

method.
Results

Our goal was to create a classifier that predicts
whether a protein is DNA-binding from its
sequence and low-resolution structure. To this
end, first of all, we need a set of structures for
DNA-binding proteins as well as a set of structures
for non-DNA-binding proteins. Using the Nucleic
Acid Database (NDB),21 we created a representative
set of DNA-binding proteins with a maximum
pairwise sequence identity of 35% between any two
sequences (see Materials and Methods for details).
This set contains 138 chains; hence, its name PD138.
As a sample of non-DNA-binding proteins, we used
a set created by Ahmad & Sarai,17 consisting of 110
non-DNA-binding chains (NB110).
To find features that discriminate between

DNA-binding and non-DNA-binding proteins, we
tested a number of properties computable from
the protein’s sequence and/or structure. The tested
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parameters include the amino acid composition, the
total charge and the dipole moment of the molecule,
the number of certain amino acids in layers (of
various thicknesses) between planes perpendicular
to the direction of the dipole moment (which, we
assumed, should roughly point towards the DNA-
binding site), parameters describing the asymmetry
of the spatial distribution of certain amino acids,
various parameters related to the secondary struc-
ture, including the amino acid composition of
helices and strands, various parameters related to
the shape of the molecule (e.g. an estimate of the
exposed surface per residue). Only features that can
be calculated quickly and efficiently were exam-
ined. Many features, including those related to
secondary structure and the shape of the molecule
were found not to discriminate well (or at all)
between DNA-binding and non-DNA-binding pro-
teins. Other parameters, such as the total charge,
were eliminated because they correlate well with
other parameters; therefore, they do not add new
information (e.g. the total charge can be calculated
from the numbers of positively and negatively
charged residues; therefore, it is redundant infor-
mation when the numbers of charged residues are
already provided). A systematic search for the best
combination of parameters (see Materials and
Methods for details of the procedure) resulted in
the following ten features: proportion of Arg, Lys,
Asp, Ala and Gly; spatial asymmetry of Arg, Gly,
Asn and Ser; dipole moment.

The spatial asymmetry of an amino acid is the
asymmetry of the spatial distribution of the
residues of that amino acid relative to the center
of mass of the entire polypeptide chain. Quantitat-
ively, we measured the asymmetry by how far the
center of mass of the set of residues of the given
amino acid is from the center of mass of the entire
chain. The dipole moment was calculated with the
center of mass of the chain as the reference point.
Although the magnitude of the dipole moment
tends to grow with protein size, we found that it is
not necessary to normalize it by the chain length;
better discrimination is achieved without normal-
ization. It should be noted that the idea that bulk
electrostatic properties such as the total charge and
the dipole moment could have predictive power
with regard to DNA-binding proteins was intro-
duced by Ahmad & Sarai.17 We found, however,
that these properties alone are not sufficient for a
prediction of DNA-binding proteins with an
accuracy that is comparable to that of more
sophisticated approaches.

Classification method

Our purpose was to use a classification method
that is conceptually and algorithmically simple,
fast, and provides some insight into which features
discriminate best between classes. Logistic
regression satisfies our criteria. Binary logistic
regression describes the relationship between
a dichotomous response variable (in our case:
a protein being DNA-binding or not; we assign
the numerical values 1 and 0 to the two cases) and a
set of explanatory variables. Mathematically, what
the regression model describes is not the value
of the response variable itself but the probability (p)
that it assumes the value one rather than zero.
Since p ranges from 0 to 1, linear regression is
inappropriate to predict its value directly. Instead,
we use the logistic transformation of p, i.e.:

logitðpÞZ logðp=ð1KpÞÞ

which is the logarithm of the odds or likelihood
ratio that the response variable is 1. Whereas p
ranges from 0 to 1, logit(p) ranges from negative
infinity to positive infinity, with logit(0.5) being
zero. Logistic regression involves fitting to the data
an equation of the form:

logitðpÞZ aCb1x1 Cb2x2 Cb3x3 C.Cbnxn

where x1, x2,... xn designate the explanatory
variables and b1, b2, ... bn are the coefficients. This
simple formulation allows a ranking of the expla-
natory variables by relative importance.
Logistic regression and cross-validation results

Logistic regression was performed on PD138 as
the DNA-binding set and NB110 as the non-DNA-
binding set, using the ten parameters specified in
the previous section as explanatory variables. In
leave-one-out cross-validation, when the threshold
for the prediction is set to the value providing the
highest F (also known as Matthews) correlation
coefficient, 124 of the 138 DNA-binding proteins
and 92 of the 110 non-DNA-binding proteins are
correctly classified, giving rise to a F correlation
coefficient of 0.74.

Looking at the regression coefficients when the
entire set is used for logistic regression, the
explanatory variables can be ranked by relative
importance (Table 1). Because the variables have
different scales (e.g. the maximum amino acid
percentages are around 20 while the maximum
dipole moment is O600), we used the regression
coefficients multiplied by the standard deviations of
the corresponding variables for ranking. Arginine
content is by far the strongest predictor of DNA-
binding, followed by the percentage of glycine and
lysine. The dipole moment is the fourth most
important variable, followed by the aspartate
content. Glycine and aspartate contents have
negative coefficients while the dipole moment as
well as arginine and lysine contents have positive
coefficients. These parameters are followed by the
spatial asymmetries of several amino acids. Aspar-
agine and glycine residues have the strongest effect,
followed by serine and arginine. Interestingly,
serine asymmetry has a negative coefficient, i.e.
serine residues are more symmetrically distributed
in DNA-binding proteins than in non-DNA-
binders. Alanine content has the smallest contribu-
tion to the total score, but we found that its



Table 1. Ranking of explanatory variables based on the logistic regression coefficients obtained on PD138/NB110

Property Coefficient (bi) Standard deviation (si) True weight (bisi)

Arg content 0.71 (0.48/0.95) 3.54 (2.5/3.8) 2.53 (1.2/3.6)
Gly content K0.37 (K0.3/K0.4) 3.36 (3.2/3.6) K1.24 (K0.9/K1.6)
Lys content 0.30 (0.16/0.43) 3.81 (3.4/3.9) 1.16 (0.55/1.7)
Dipole moment 0.012 (0.013/0.012) 87.1 (91/70) 1.06 (1.2/0.85)
Asp content K0.33 (K0.16/K0.5) 2.56 (2.6/2.7) K0.84 (K0.4/K1.3)
Asn asymmetry 0.12 (0.12/0.16) 4.12 (3.1/4.3) 0.50 (0.37/0.68)
Gly asymmetry 0.07 (K0.05/0.14) 4.41 (2.2/4.7) 0.32 (K0.11/0.7)
Ser asymmetry K0.08 (K0.04/K0.14) 3.56 (2.9/3.7) K0.29 (K0.11/K0.53)
Arg asymmetry 0.02 (0.001/0.07) 3.79 (3.7/3.9) 0.07 (0.005/0.3)
Ala content 0.015 (K0.05/0.08) 3.73 (3.8/3.9) 0.05 (K0.2/0.3)

In parentheses: the numbers for enzymes only and non-enzymes only.
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coefficient is larger when the logistic regression is
performed on smaller sets such as PD54; therefore
we kept it (the coefficients of other properties were
much less variable).

A full characterization of the performance of a
classifier is provided by receiver operator charac-
teristic (ROC) curves. An ROC curve is a plot of the
“hit rate” (i.e. sensitivity, TP/(TPCFN)) versus the
“false alarm rate” (i.e. false positive rate, FP/(FPC
TN)) as the threshold for the prediction is varied.
The ROC curve of our method, as obtained by the
leave-one-out cross-validation on the PD138 and
NB110 sets, is shown in Figure 1 (continuous line).
Table 2 (line 1) shows several performance
measures, namely the area under the ROC curve
(AUC), the normalized area under the curve up to a
false positive rate of 25% (AUC25) and the
sensitivity at a false positive rate of 15%.

In order to find out how much the parameters
computable from the three-dimensional structure
contribute to the accuracy of the prediction, we
Figure 1. Receiver operator characteristic (ROC) curves
for our method from the leave-one-out cross-validation
on the PD138/NB110 sets. Continuous line, ROC curve
using all ten explanatory variables; dotted line, ROC
curve using only the variables computable from the
sequence alone.
performed the cross-validation using only the
proportions of Arg, Gly, Asp, Lys and Ala; i.e.
those parameters that are not dependent on the
three-dimensional structure. The dotted line in
Figure 1 shows the ROC curve from this test, and
line 2 in Table 2 shows the performance measures
computable from it. At a false positive rate of 15%,
the method using only structure-independent
parameters provides a sensitivity of 78.2%, which
increases to 86.2% when the structure-derived
parameters are added. The AUC25 value is 0.66
and 0.76 without and with the structure-derived
parameters, respectively. However, when false
positive rates as high as 35% are allowed, the
method using only sequence-dependent par-
ameters has a slightly better sensitivity than when
the structure-derived parameters are included as
well (97% versus 94%).

Prediction on inaccurate structures

To test how well our method performs on low-
resolution structures or inaccurate models, we used
the TASSER program22 to create structural models
(Ca-only) with root mean square deviations
(RMSDs) of approximately 1, 2, 3, 4, 5 and 6 Å
from native for each chain in PD138 and NB110. We
repeated the logistic regression and the leave-one-
out cross-validation in a procedure where accurate
structures were used as training data but inaccurate
structures were used as test proteins. Table 3 shows
the maximum F correlations as a function of the
RMSD from native.
There is only a slight decrease in classification

performance as the structures become more and
more inaccurate. Line 3 in Table 2 shows various
performance measures calculated from a ROC
curve (not shown) obtained with structures having
an RMSD of w6 Å from native. For example, at a
false positive rate of 15%, our method achieves a
sensitivity of 86.2% on accurate structures (see line 1
in Table 2); this drops to 83.3% when structures 6 Å
away from native are used.

Prediction on unbound forms

The structures in PD138 are all DNA-bound
forms of the proteins. It is known that many



Table 2. AUC and AUC25 values, sensitivities at 15% false positive rate and maximum F correlation coefficients from
various ROC curves obtained for our method (see the text for details)

AUC/AUC25
Sensitivity at 15% false

positive rate (%) Maximum F

Leave-one-out cross-validation with training on PD138/NB110
1. All parameters 0.93/0.76 86 0.74
2. Sequence-based parameters only 0.91/0.66 78 0.72
3. Inaccurate structures (6 Å away from native) 0.92/0.72 83 0.69
4. Enzymes 0.85/0.58 74 0.58
5. Non-enzymes 0.96/0.83 92 0.79

Leave-one-out cross-validation with training on subsets of PD138
6. Enzymes/NB110 0.83/0.56 67 0.57
7. Non-enzymes/NB110 0.96/0.84 94 0.81

Testing on BD54 and UD54, using PD138/NB110 as training
8. Bound conformations (BD54) 0.93/0.74 85 0.72
9. Unbound conformations (UD54) 0.91/0.70 80 0.68

Leave-one-out cross-validation on other sets
10. Stawiski et al.’s sets (PD54/NB250) 0.93/0.78 89 0.73
11. Ahmad, Sarai’s sets (PD78/NB110) 0.95/0.82 92 0.79

Lines are numbered for easier reference.
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DNA-binding proteins undergo conformational
changes upon binding to DNA; as described by
Nadassy et al.23 the extent of these changes varies
widely. In practice, predicting DNA-binding func-
tion only makes sense if we have an unbound
structure. Therefore, it is essential to assess how
well our method works on unbound forms of DNA-
binding proteins. We constructed a non-redundant
set of 54 protein sequences with both DNA-bound
and unbound conformations in the PDB (we denote
the unbound set as UD54 and the bound set as
BD54). The average RMSD between the bound and
unbound conformations was 2.39 Å (range: 0 to
10.5 Å). To see how well our method performs on
the unbound structures, we applied it to both UD54
and BD54 and compared the results. Since several of
the chains in these sets have homologs in PD138, for
the testing of each protein, we excluded all its
homologs (sequences with O35% identity) from
PD138 and recalculated the logistic regression
coefficients. Evidently, the number of correct
predictions on both sets depends on the threshold
value chosen. We computed the ROC curves (not
shown) for both sets (using NB110 as the non-
binding set) and calculated the usual performance
measures from the curves (see lines 8 and 9 in
Table 2). There is a small decrease in the perform-
ance of the method when the prediction is applied
Table 3. Maximum F correlation coefficients from leave-
one-out cross-validation of our method as obtained with
inaccurate structures having various RMSDs from the
accurate, native structures

RMSD F

0.0 0.74
1.0 0.74
2.0 0.72
3.0 0.73
4.0 0.72
5.0 0.71
6.0 0.69
to unbound conformations versus bound ones.
For example, at a false positive rate of 15%, 85%
of bound and 80% of unbound structures of
DNA-binding proteins are correctly classified as
DNA-binding. It should be noted that the
proportion of NMR structures is greater among
the unbound conformations than the bound ones
(16 versus 10 out of 54 structures).

Performance of the method on various classes
of DNA-binding proteins

In their overview of DNA-binding proteins,
Luscombe et al.5 classified these proteins by the
DNA-binding motif found in each structure. This
classification divides DNA-binding proteins into
eight major groups comprising a total of 54
structural families. The groups are: (1) helix-turn-
helix, (2) zinc-coordinating, (3) zipper-type, (4)
other a-helix, (5) b-sheet, (6) b-hairpin/ribbon, (7)
other, and (8) enzyme. Stawiski et al.18 unified the
b-sheet and the b-hairpin/ribbon groups, thus
obtaining a total of seven groups. Since these
groups represent classes of DNA-binding proteins
that have quite different binding motifs and modes,
it is of interest to see how well our prediction
method works on each group. We classified the
proteins in our PD138 set into these seven groups,
using literature data, structural similarities to
proteins in known groups, and in some cases,
visual inspection. Using this classification, we
analyzed the results of the leave-one-out cross-
validation procedure on the PD138/NB110 sets, to
see which protein groups the false negatives (DNA-
binding proteins falsely predicted as non-DNA-
binding) come from at various false positive rates.
We found that most false negatives usually come
from the enzyme group: at a false positive rate of
just 11.8%, 91.5% of DNA-binding proteins in
the non-enzyme groups are correctly classified
but 30.2% of the enzymes are still misclassified.



Figure 2. ROC curves for our method from leave-one-
out cross-validation for non-enzymes (continuous line)
and enzymes (dotted line) in the PD138 set, using the
NB110 set as the non-DNA-binding set.
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Figure 2 shows separate ROC curves for enzymes
and non-enzymes, and lines 4 and 5 in Table 2 show
the values of various performance measures com-
puted from the curves. The maximum F correlation
coefficient is 0.79 for non-enzymes and only 0.58 for
enzymes; the sensitivities at 15% false positive rate
are 92% and 74%, respectively. This finding is in
accordance with Stawiski et al.’s own results: their
method also produces most false negatives among
the enzymes. Comparing the properties of enzymes
and non-enzymes, we find that enzymes on average
have a smaller total charge than non-enzymes (1.25
versus 5.59) and their dipole moment is smaller, too
(0.52 versus 0.88 per residue).

The marked difference in the performance of our
prediction method between enzymes and non-
enzymes suggests that separate methods could be
used for these two groups, and the regression
coefficients should be different when predicting
DNA-binding enzymes and non-enzymes. To see
whether this approach is viable, we recalculated the
logistic regression coefficients for the 43 enzymes
and 95 non-enzymes in PD138. The results are
shown in Table 1 (numbers in parentheses). We find
that the absolute value of most regression coeffi-
cients is smaller for enzymes than for non-enzymes;
the only exception is the dipole moment. The
difference is most remarkable for the percentages
of charged residues. This is in accordance with the
observation that the total charge of enzymes is, on
average, smaller than that of non-enzymes.
Obviously, with respect to the explanatory variables
we used in our regression model, DNA-binding
enzymes are less different from non-DNA-binding
proteins than DNA-binding non-enzymes.

In order to test whether different regression
coefficients for enzymes and non-enzymes would
work better than using the same coefficients to
predict both groups, we repeated the leave-one-out
cross-validation using only the enzymes and non-
enzymes as a training set, respectively (NB110 was
still used as the non-binding set). The performance
measures calculated from the ROC curves (not
shown) are shown in lines 6 and 7 of Table 2. We
found that exclusion of the enzymes from the
training set did not significantly improve the
prediction of non-enzymes: the AUC25 grew from
0.83 to 0.84 and the sensitivity at 15% false positive
rate increased to 94% from 92%. On the other hand,
the prediction performed worse on enzymes when
the non-enzymes were not used for training: the
AUC25 dropped from 0.58 to 0.56 and the
sensitivity at 15% false positive rate fell from 74%
to 67%. Therefore, our method would not benefit
from trying to predict DNA-binding enzymes and
non-enzymes separately, with two different
regression formulae.

Binding motif independence testing

One of our goals when developing our method
was to ensure that it could recognize DNA-binding
proteins having new folds and new DNA-binding
motifs that are not yet present in the structural
database. It is possible that the features used in our
prediction method somehow contain information
about the fold or the particular binding motif of
each DNA-binding protein and therefore DNA-
binding proteins having different folds or motifs are
poorly predicted. To test this, we performed cross-
validation on PD138 as the DNA-binding set and
NB110 as the non-DNA-binding set using a slightly
different scheme than before. With the non-binding
set, the usual leave-one-out scheme was used, but
with the binding set, we excluded from the
“training set” all proteins belonging to the same
group as the test protein. (Groups were defined as
described in the previous section; proteins in the
same group have similar DNA-binding motifs.) The
number of proteins correctly predicted as DNA
binding in each group, at a false positive rate of
15%, is shown in Table 4. Compared to the plain
leave-one-out cross-validation scheme (denoted
scheme A in the Table), the number of correct
predictions reduced to 26 from 32 in the enzyme
group and to 34 from 36 in the helix-turn-helix
group when all proteins in the same group as the
test protein were left out (scheme B in the Table); in
other groups, no reduction was observed. However,
it is important to note that some protein groups
contain as many as 43 proteins; therefore, excluding
all proteins in a group leads to a significant decrease
in the size of the training set.
How can we decide if the observed drop in

prediction performance results from the fact that all
proteins having the same binding motif as the test
protein were excluded during cross-validation or
from the fact that fewer proteins are used to obtain
the logistic regression coefficients? To test this, we
performed another cross-validation using a different



Table 4. Data for the binding motif independence testing: number of proteins correctly identified as DNA binding in
various cross-validation schemes, at a false positive rate of 15%

Group (total number of
proteins in group)

Scheme A: leave out
only the test protein

Scheme B: leave out all
proteins in the same

group as the test protein

Scheme C: leave out the same number of proteins
as in Scheme B but from groups other than the

test protein’s

Helix-turn-helix (42) 36 34 34
Zinc-coordinating (6) 6 6 6
Zipper-type (9) 9 9 9
Other a-helix (18) 18 18 18
Beta sheet (9) 9 9 9
Other (11) 9 10 9
Enzyme (43) 32 26 28
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scheme (scheme C in Table 4): for each DNA-binding
test protein, we excluded proteins from groups other
than the test protein’s group. Thenumberof excluded
proteinswas the sameas thenumberofproteins in the
same group as the test protein, and they were picked
randomly. In this way, on average 29.8 proteins were
excluded for each test protein (and of course, the test
protein itself). The results show that this reduction of
the size of the data set also caused a slight decrease in
performance compared to the plain leave-one-out
cross-validation scheme: 28 instead of 32 enzymes
and 34 instead of 36 helix-turn-helix proteins are
classified correctly. These numbers are only slightly
different from thoseobtainedwith schemeB; thus,we
conclude that most of the reduction in the perform-
ance of our method when proteins having the same
DNA-binding motif as the test protein are omitted
from the training set comes from the reduction of the
size of the training set. This suggests that the
dependence of our method on the binding motifs
present in the training data is very small.

Similar testing of the binding motif independence
was also performed by Stawiski et al.18 with their
method. Although their results are not directly
comparable with ours because of the different (and
smaller) data set they used, our results are
consistent with theirs regarding the finding that
the enzyme group is the most sensitive to the
exclusion of the proteins in the same group from the
training set.

Comparison with other methods

There are two published methods that aim to
solve the same problem as our method: Stawiski
et al.18 and Ahmad & Sarai.17 A comparison of two
prediction methods is only adequate if the same
data sets and the same evaluation method are used
to assess their performance. The authors of both
studies created their own data sets. Stawiski et al.
used 54 DNA-binding (PD54) and 250 non-binding
(NB250) proteins; Ahmad & Sarai employed 78
DNA-binding (PD78) and 110 non-binding (NB110)
chains. Both studies used leave-one-out cross-
validation.

Stawiski et al. obtained a F correlation coefficient
of 0.74; Ahmad and Sarai do not calculate a F
correlation coefficient, but on looking at their data,
this can easily be computed and turns out to be 0.68.
Neither study presented an ROC curve for their
prediction schemes; only a single value of sensi-
tivity and false positive rate was published in both
publications.

When we apply our approach to Stawiski et al.’s
data set (PD54/NB250), the F correlation coefficient
from the leave-one-out cross-validation (with the
best threshold) is 0.73, i.e. just 0.01 less than that of
Stawiski et al.’s method. We calculated the ROC
curve (not shown) for our method on Stawiski
et al.’s protein sets; line 10 of Table 2 shows the
corresponding performance measures. The per-
formance of our method is quite close to that of
Stawiski et al.’s: Stawiski et al.’s method reaches a
sensitivity of 81.5% at a false positive rate of 5.6%,
while our method reaches the same sensitivity at a
false positive rate of 6.0%, a difference of just 0.4%.

Whenwe apply our approach to Ahmad & Sarai’s
data set (PD78/NB110), the maximum F correlation
coefficient obtained from the leave-one-out cross-
validation is 0.79. This is significantly higher than
the value 0.68 from Ahmad & Sarai’s own method.
However, our re-analysis of Ahmad & Sarai’s data
indicates that the way the PD78 set was created by
these authors is biased. The authors used 62
protein–DNA complex structures having !25%
pairwise sequence identity. They then split these
62 complexes into chains to obtain the PD78 set,
without re-checking the pairwise sequence identity
between the chains. In fact, we found that 20 out of
these 78 chains have an identical partner within the
set (100% sequence identity) and an additional 17
chains have a partner having O35% sequence
identity. Thus, the PD78 set is highly redundant;
leave-one-out cross-validation on this set will
obviously overestimate the performance of any
prediction method. In addition, the PD78 set
appears to be somewhat biased with regard to the
total charge and dipole moment of the chains: the
average charge is 5.7 and the average dipole
moment per residue is 0.97, compared to an average
charge of 4.0 (4.2) and an average dipole moment
per residue of 0.78 (0.77) for the set PD138 (PD54).
Since Stawiski et al.’s PD54 set and our indepen-
dently constructed PD138 set have a similar
distribution with regard to charge and dipole
moment, we believe that these sets represent the
actual distribution of DNA-binding proteins in
nature better than Ahmad & Sarai’s PD78 set.
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We calculated the ROC curve (not shown) of
our method as obtained by leave-one-out cross-
validation on Ahmad & Sarai’s protein sets; the
corresponding performance measures are shown in
line 11 of Table 2. The curve runs higher than the
one obtained with either our own protein sets
(PD138/NB110) or Stawiski et al.’s protein sets
(PD54/NB250), again a reflection of the redundancy
of Ahmad & Sarai’s DNA-binding protein set
(PD78). Ahmad & Sarai’s method, when tested
with their own data sets, has a sensitivity of 80.7% at
a false positive rate of 12.7%; our method (as tested
with the same protein sets) reaches the same
sensitivity at a false positive rate of just 4.5%. This
indicates that our method performs significantly
better than Ahmad & Sarai’s.
Discussion

We have developed a conceptually simple and
efficient method that uses logistic regression with
ten explanatory variables, each one easy and fast to
calculate, to predict whether a protein is DNA-
binding from its sequence and a low-resolution,
Ca-only structure. An analysis of the regression
coefficients shows that the proportions of charged
residues, especially arginine, are the most import-
ant discriminators between the two groups. Just as
important is the glycine content of the protein, with
DNA-binding proteins tending to contain fewer
glycine residues than non-DNA-binding ones.
Actually, just these sequence-based parameters are
sufficient for predicting DNA-binding with reason-
able accuracy; however, including some structure-
based parameters further increases the performance
of our classifier (e.g. from 78% to 86% sensitivity at a
15% false positive rate). Asymmetries of the spatial
distributions of certain residues, especially aspar-
agine and glycine, are good indicators of DNA-
binding capacity; serine tends to be more evenly
distributed in DNA-binding proteins than non-
DNA-binding ones. The dipole moment of the
molecule also helps discriminate between the two
classes. The ranking reflects a few known facts
about DNA–protein interactions. Three of our ten
explanatory variables are the percentages of argi-
nine, lysine and aspartic acid in the sequence;
although glutamic acid is not included, these
parameters are strongly correlated with the net
charge of the polypeptide chain. Positive net charge
should facilitate the binding of the protein to the
negatively charged DNA and, plausibly, its dipole
moment could be important for finding the correct
orientation for binding.23 Asymmetric spatial
distributions of certain amino acids are indicative
of residues typically present at protein–DNA
interfaces. Arginine, with its unique capacity to
form multiple and bifurcated hydrogen bonds12

and to simultaneously bind multiple DNA bases, is
involved in almost all DNA-binding sites.23 Aspar-
agine, like glutamine, also occurs commonly at
protein–DNA interfaces, with its hydrogen binding
properties being essential for molecular recog-
nition. Glycine has not received special attention
in most analyses of protein–DNA binding; we have
found, however, that it is favored in the minor
grooves of the DNA double helix while depleted in
the major groove (unpublished data). It is plausible
that its small size and flexibility makes glycine a
good candidate for motifs recognizing the minor
groove; this is consistent with investigations of
small, minor-groove recognizing peptides where
glycine has been found to allow the chain to bind
deeply in the groove.24,25 Interestingly, although
DNA binding surfaces have been found to be
enriched in serine by others (e.g. Cheng et al.12), in
our study, the regression coefficient for the serine
spatial asymmetry is negative, meaning that greater
asymmetry is associated with non-DNA-binding
proteins. This is probably due to the various
functional roles serine may play in other proteins.
We found that the performance of our method is

lower for enzymes that bind to DNA than for non-
enzymes, a finding that is consistent with that of
Stawiski et al.,18 obtained with their method. This
indicates that DNA-binding enzymes are charac-
teristically different from DNA-binding non-
enzymes: their structural properties apparently
follow different patterns, and therefore we cannot
predict them with equally high sensitivity as the
non-enzymes. A plausible explanation for this
observation could be that many enzymes only
bind to DNA transiently and therefore their proper-
ties are not markedly distinct from non-DNA-
binding proteins. In particular, we found that
enzymes, unlike non-enzymes, do not tend to
have a large positive total charge. This is consistent
with the finding of Jayaram et al.26 that with
proteins that bind to short stretches of DNA in an
enveloping mode (which is characteristic of
enzymes), electrostatics tends to have an unfavor-
able contribution to the total free energy of binding.
Despite the fact that enzymes behave differently

in our method than non-enzymes, we have
demonstrated that the difference is not large
enough to justify the development of separate
prediction methods for enzymes and non-enzymes
based on the ten features that we employ in our
approach.
Testing the method on inaccurate structures

shows that it is very robust: classification perform-
ance only slightly decreases relative to the native
structure when structures with an RMSD as much
as 6 Å away from native are used. This is under-
standable considering that none of the properties
employed in our method depend strongly on the
accurate, detailed atomic structure of the protein.
In actual applications, predicting nucleic acid

binding function from a structural model of a
protein only makes sense if the available structure
does not contain a bound nucleic acid molecule, and
therefore, the question of whether the protein is
capable of binding a nucleic acid remains open.
Many DNA-binding proteins are known to undergo
conformational changes upon the binding of
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DNA.23 However, because of the small number of
available unbound structures of DNA-binders, the
data set PD138 that we used for training (and
testing) our method only contains DNA-bound
conformations of proteins, with the DNA mol-
ecule(s) stripped off. Tests of our prediction method
using only bound conformations may overestimate
the actual performance of the method in actual
applications. Therefore, it is important to test
whether the method is capable of providing correct
predictions when unbound (free) conformations of
DNA-binding proteins are used. We used the
bound and unbound conformations of 54 proteins
to evaluate the performance of our method on
unbound conformations. Although the sensitivity
of the method is somewhat less on unbound than on
bound conformations (80% versus 85% at 15% false
positive rate), the difference is small, and some of
the difference may be due to the fact that there are
more NMR structures (therefore lower accuracy)
among the unbound than the bound conformations.
This observation, just like the results with inaccur-
ate structures, shows that our method is robust
against conformational changes or deviations
from the native, bound conformation of a protein.
Clearly, the structure-dependent properties that we
use as input variables to our method (the dipole
moment and the spatial asymmetry of amino acid
distributions) vary little upon usual, ligand-
induced conformational changes of proteins.

Since we were interested in developing a method
that can recognize DNA-binding proteins with new
folds or new bindingmodes or motifs, we tested our
method using cross-validation schemes where
proteins belonging to the same structural group
(as described by Luscombe et al.’s classification) as
the test protein are removed from the training data.
Although we found a slight decrease in the
performance of the method when tested this way,
we showed that most of this decrease is due to the
reduction of the size of the data set and not to the
elimination of the proteins in the same group.
Therefore, we expect that the method can recognize
new kinds of DNA-binding proteins with practi-
cally the same sensitivity as those belonging to
already known groups.

Comparing our method to two other published
methods showed that it has significant advantages
over both of them. Stawiski et al.18 presented a
method that relies on accurate all-atom structures
and requires time-consuming electrostatic and sur-
face calculations and analyses. It also needs
information on conserved residues, which requires
a PSI-BLAST search and assumes that related
sequences are found in the sequence databases.
Our method only uses properties that can be
computed extremely fast, and it does not need
related sequences. Ahmad & Sarai17 published a
method that relies on bulk electrostatic properties of
the molecule. Although we utilized this idea when
we included the dipole moment of the protein as
one of the explanatory variables, we showed that
only using these properties is insufficient for
reliable prediction. We have pointed out that the
way Ahmad and Sarai validated their results was
flawed and their method is less accurate than they
claimed. Adding a few other properties as inputs
to the prediction algorithm, however, greatly
improves the classification performance of the
method, and that is what we have accomplished.
Since our method is both fast and accurate, it can
readily be applied in proteome-scale studies, either
to experimental structures obtained in structural
genomics projects or to structural models obtained
from proteome-scale structure prediction.
Materials and Methods

Data sets

A set of 138 DNA-binding protein chain structures
(PD138) was created using the following procedure: The
Nucleic Acid Database21 was queried to retrieve all X-ray
structures with %3.0 Å resolution for protein–DNA
complexes containing double-stranded DNA. The result-
ing 576 complexes were split into chains and analyzed.
Structures containing less than five DNA base-pairs were
discarded, and protein chains shorter than 41 residues or
having less than five residues in contact with the DNA
were excluded. This resulted in 1130 DNA-binding
protein chains. An all-against-all sequence comparison
was performed on this set using the ALIGN0 global
alignment program27 from the FASTA2 package, with
default gap penalties (no end gap penalties; BLOSUM50
was used as a scoring matrix). From the resulting
alignments, pairwise sequence identities were calculated
by dividing the number of identities by the length of the
shorter sequence. Using the sequence identity data, a
culling procedure was used to obtain a subset of the 1130
chains where no two chains haveO35% identity. First, the
1130 chains were sorted by the resolution of their X-ray
structure. The top structure (having the best resolution)
was kept and all its neighbors (i.e. chains O35% identical
with the top chain) were excluded. This procedure was
repeated with the second chain in the list and so on until
the list was exhausted. The resulting set contained 138
protein chains. We used literature data, structural
similarities to proteins in known groups, and in some
cases visual inspection to classify each structure in one of
the eight groups of DNA-binding proteins defined by
Luscombe et al.5 (the b-sheet and b-hairpin/ribbon classes
were unified, resulting in seven actual groups). The
structures in each group are as follows (the first four
characters are the PDB code and the fifth one is the chain
identifier): Helix-turn-helix: 1aisB, 1bc8C, 1c9bA, 1cf7B,
1ddnA, 1dp7P, 1e3oC, 1efaA, 1f4kA, 1fjlA, 1hcrA, 1hlvA,
1ic8A, 1ignA, 1j75A, 1je8A, 1jftA, 1jt0A, 1k78A, 1l3lA,
1lmb3, 1lq1A, 1mnmC, 1ornA, 1perL, 1pp7U, 1pufA,
1pufB, 1qpiA, 1r71A, 1r8dA, 1r8eA, 1repC, 1rh6B, 1saxA,
1sfuA, 1tc3C, 1troA, 2cgpA, 2irfG, 3htsB, 3orcA; zinc-
coordinating: 1dszA, 1hwtC, 1meyC, 1ozjA, 1tsrB, 2drpA;
zipper-type: 1a0aA, 1am9A, 1dh3A, 1gd2E, 1jnmA,
1llmC, 1mdyA, 1nkpB, 1nlwA; other a-helix: 1b3tA,
1egwA, 1f44A, 1floA, 1fzpB, 1h89C, 1jfiB, 1jj4A, 1ku7A,
1kx5A, 1kx5B, 1kx5C, 1kx5D, 1mnmA, 1p7dA, 1qrvA,
1sknP, 2bopA; b-sheet/hairpin/ribbon: 1bdtA, 1c8cA,
1ecrA, 1h6fA, 1hjcA, 1mjoA, 1owfB, 1p71A, 1qnaA;
other: 1a3qA, 1bg1A, 1e3mA, 1j3eA, 1jb7A, 1jb7B, 1jeyA,
1jeyB, 1mnnA, 1p7hL, 1pt3A; enzyme: 1a31A, 1a73A,
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1bl0A, 1cezA, 1cl8A, 1d02A, 1dc1A, 1dctA, 1dewA,
1dfmA, 1dizA, 1dmuA, 1emhA, 1esgA, 1ewnA, 1fiuA,
1g38A, 1g9zA, 1i3jA, 1i6jA, 1iawA, 1jx4A, 1k3xA, 1kc6A,
1m3qA, 1m5rA, 1musA, 1mwiA, 1nk4A, 1oupA, 1p8kZ,
1qumA, 1r2zA, 1rrqA, 1rv2A, 1rztA, 1sl1A, 1sx5A, 1t3nA,
1vasA, 2dnjA, 3pviA, 6mhtA.
For comparison with other, publishedmethods, we also

used two other DNA-binding protein sets. Stawiski et al.18

created a representative set of 54 proteins (PD54), based
on a classification of DNA-binding proteins by Luscombe
et al.5 Ahmad & Sarai17 constructed another set (PD78)
consisting of 78 sequences from 62 complex structures.
Because of a mistake in the construction method,
however, this set is redundant and therefore inappropri-
ate for unbiased testing. We only used it for comparison
between Ahmad & Sarai’s and our method.
In order to train and test our prediction method, we

also needed sets of proteins that do not bind to DNA. Two
published sets were used for this purpose. Ahmad &
Sarai17 created a set of 110 non-DNA-binding proteins
(NB110) by excluding the known DNA binders from Rost
& Sander’s representative 126-protein set RS126.28

Stawiski et al.18 constructed a set in a similar way using
Hobohm & Sander’s29 PDBSELECT database and apply-
ing a 25% sequence identity cutoff. This set, NB250,
contains 250 chains.
To test how our method performs on unbound

conformations of DNA-binding proteins, we created
two other sets, one containing bound conformations of
DNA-binding proteins and another one containing their
corresponding unbound conformations. The procedure to
construct these sets was as follows. First, protein chains
longer than 40 residues in the PDB were divided into two
classes based on whether the PDB entry contained a DNA
molecule; this step resulted in 5390 DNA-associated and
64,275 non-DNA-associated chains. A BLAST30 search
was performed for each non-DNA-associated chain to
find similar sequences among the DNA-associated
chains. For each query sequence, only one hit with a
reported 100% sequence identity and an E-value !10K10

was kept; when no such hit could be found, the chain was
discarded. This procedure resulted in a set of DNA-
binding chains and another set containing the same
sequences in their unbound conformation. The sets were
still too large, so further filtering was applied. PDB files
not containing the word DNA in their headers were
discarded, and so were DNA-associated chains having
fewer than six residues in contact with DNA. On the
remaining set, an all-against-all BLAST search was
performed and the set was culled so that no two
sequences align with an E-value!0.1. The end result is
a non-redundant set of 54 chains in DNA-bound
conformation (BD54) and another set containing the
same sequences in unbound, free conformation (UD54).
We list the PDB codes for UD54 here, with the
corresponding chains from BD54 given in parentheses:
1ajyA (1zmeC), 1aqjA (1g38A), 1arqA (1bdtA), 1bfs_
(1le5B), 1bgt_ (1ixyA), 1bno_ (1huoA), 1bw6A (1hlvA),
1ci4A (2bzfA), 1d9nA (1ig4A), 1dbqA (1bdiA), 1eh6A
(1t39A), 1enj_ (1vasA), 1ev7A (1iawA), 1exnA (1j5fA),
1f08A (1ksxA), 1f43A (1yrnA), 1f9fA (1jj4A), 1fbuA
(3htsB), 1g6nA (2cgpA), 1gdc_ (1r4oA), 1gvjA (1mdmB),
1gxqA (1gxpA), 1hioA (1eqzA), 1hma_ (1e7jA), 1hmy_
(10mhA), 1irf_ (2irfG), 1j0rA (1f4kA), 1j53A (1mgzA),
1jeqB (1jeyB), 1lea_ (1mvdA), 1lfb_ (1ic8A), 1lrp_ (1gfxA),
1lx8A (1rh6A), 1m08A (1pt3A), 1mijA (1xpxA), 1mugA
(1mtlA), 1mw9X (1mw8X), 1nikB (1i6hB), 1oy3B (1leiA),
1pqvB (1r9sB), 1q39A (1k3wA), 1qvpA (1c0wA), 1sd4A
(1xsdA), 1sso_ (1bbxC), 1tbpA (1ytbA), 1vsrA (1cw0A),
1wtdA (1wteA), 1xv5A (1y6fA), 1xwrA (1zs4A), 1z91A
(1z9cA), 2a6mA (2a6oA), 2alcA (1f4sP), 2gcc_ (1gccA),
2hfh_ (2hdcA).
Logistic regression

Logistic regression was performed using Jeffrey Whi-
taker’s public domain Python code†, which uses the
iteratively re-weighted least-squares (IRLS) algorithm to
find a maximum likelihood estimate of the constant term
a and the coefficients b1, b2,.,bn in the regression formula.
When prediction is made for new cases, the expression is
evaluated with the corresponding values of the x1, x2, .
xn explanatory variables, and the response variable is
predicted to be 1 if the result is above a certain threshold.
Although a threshold of zero (corresponding to a
probability value of 0.5) appears to be a natural choice,
it is not always appropriate: e.g. it will lead to under-
prediction of the positive cases when the data set used for
fitting is unbalanced, i.e. it contains significantly more
negative cases than positive ones. A better practice is to
choose a threshold that maximizes one’s preferred
measure of classification performance. A good measure
of classifier performance is the F correlation coefficient
(also known asMatthews correlation coefficient), which is
the correlation coefficient between two dichotomous
variables, in our case the predicted and the actual values
of the response variable. Therefore, for the purposes of
prediction, where a single threshold was needed, we
usually chose a threshold that maximizes the F correlation
coefficient in a cross-validation test of the method. For the
preparation of ROC curves, the threshold was varied.
Cross-validation and measures of classifier
performance

Leave-one-out cross-validation (also called jackknifing)
was used to assess the performance of our prediction
method. Using a given threshold for logit(p), true and
false positive and negative predictions were counted and
their numbers designated as TP, FP, TN, and FN. As one
measure of performance, we used the F correlation
coefficient (also known as Matthews correlation coeffi-
cient), defined by:

FZ
TP!TNKFP!FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPCFNÞðTPCFPÞðTNCFPÞðTNCFNÞ
p :

The threshold was varied to prepare ROC curves and to
find the highest possible F correlation coefficient.
Besides F, three additional measures were used to

evaluate the performance of our method: (1) the
sensitivity at a false positive rate of 15%; (2) the area
under the ROC curve (AUC), a well-known measure of
classifier performance; and (3) the area under the ROC
curve up to a false positive rate of 25%, divided by 0.25 to
obtain a measure that varies between 0 and 1 (AUC25).
The justification for using AUC25 as a performance
measure is that for practical purposes, a false positive rate
higher than 25% is rarely acceptable; therefore, the
sensitivities at such high false positive rates can be
excluded for performance measurement.
For testing the independence of the method from

specific binding motifs, another type of cross-validation
was also performed where not only the tested protein

http://www.cdc.noaa.gov/people/jeffrey.s.whitaker/python/logistic_regression.html
http://www.cdc.noaa.gov/people/jeffrey.s.whitaker/python/logistic_regression.html


932 Structure-based Prediction of DNA-binding Proteins
itself but all proteins in the same class (group) were left
out from the set used to compute the logistic regression
coefficients.

Feature selection

A number of features computable from the protein
sequence and structure were considered for inclusion in
the set of parameters used for our prediction method. To
find the best combination of features, we used an
approach combining the ideas of “forward selection”
and “backward elimination”, two well-known variable
selection methods for regression. We started with one
feature (the total charge) and added other features one by
one, recalculating the maximum F correlation coefficient
from the cross-validation test as described in the previous
section, and keeping those features that increased the
correlation coefficient. When no further increase could be
reached, we retested the effect of each feature and found
that several of them could be eliminated. In this way we
arrived at a set of features that resulted in a maximum F
correlation coefficient; adding new features did not
increase F and removing any feature decreased it.

Calculation of features

From just the sequence information itself, the pro-
portions of any of the 20 amino acids can be calculated.
For features computable from the structure, only the Ca

positions were used. The spatial asymmetry of an amino
acid AA was defined as the distance between the
geometric center of the molecule and the geometric center
of the set of AA residues. The dipole moment was
calculated from the Ca positions (with the center of mass
of the molecule as the origin), assigning a charge ofC1 to
Arg and Lys and a charge ofK1 to Asp and Glu residues.

Generating inaccurate structures

To test how well our prediction method performs on
inaccurate structures (e.g. low-resolution experimental
structures or models obtained by structure prediction),
we used the TASSER program22 to generate structures
(“decoys”) that are protein-like but have various levels of
RMSD from native protein structures. TASSER was
started with a native structure as input and an ensemble
of structures was generated; structures having an RMSD
close to 1, 2, 3, 4, 5 and 6 Å from the native structure were
selected from this ensemble.
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